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Problem 1 
 
At your new job in at a Silicon Valley manufacturer of semiconductors, your first task is 
to perform a safety evaluation of a pressure vessel. The vessel is spherical in shape with a 
diameter of 2m and will be used to store highly toxic pyrophoric silane (SiH4) gas (using 
in the deposition of silicon thin films). The vessel is stored outside the processing 
laboratory for safety reasons. If the container fails, most of Santa Clara County will 
perish. In your evaluation you must answer the following questions: 
 
a) Use the Tresca Criterion to determine what internal pressure will cause first yielding in 
the 5mm thick walls if the vessel is made from a carbon steel (uniaxial tensile properties: 
E = 210 GPa, s y = 450 MPa, s u = 560 MPa)? 
 
b) What are the principal stresses and the maximum shear stress at the maximum 
operating pressure of 1800 kPa? 
 
Solution 1 - 10 points 
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Problem 2 
 
Two stainless steel rods with a square cross-section, 1.10 m on both side and 25 m long, 
are joined by a silver alloy braze (0.5 mm thick): 
 

 
 

 E (GPa) ? s y (MPa) s UTS (MPa) 
Stainless 

Steel 
 

200 
 

0.3 
 

1240 
 

1530 
 

Silver Alloy  
 

30.3 
 

0.367 
 

140 
 

140 

 
This structure is loaded in uniaxial tension, parallel to the long axis of the steel rods and 
perpendicular to the braze joint. The alignment is such that bending is not allowed to 
occur.  
 
Two modes of mechanical failure modes are possible: 

1) Yielding of the silver braze 
2) Yielding of the steel 

 
What is the value of the applied uniaxial force (P) required to initiate first yield in this 
joined-steel configuration and where will the yielding first occur? 
 
Assumptions: 

1) Because the silver braze is relatively “thin” compared to the steel bar, the 
deformation of the silver is controlled by the steel because it is constrained 
(the stiffness of the steel far exceeds that of the silver) – therefore, you can 
assume that the strain in the joint is the strain in the steel. 

2) Hint 1: First compute the Poisson’s contraction strains in the silver braze joint 
using Hooke’s Law; then consider the corresponding strain in the steel where 
no constraint will exist. 

3) Hint 2: Use the Von Mises criterion to calculate the potential yielding in the 
Silver alloy  

 

P 

Steel Steel 
Silver 
braze 

P 



Solution 2 - 15 points 
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ε22St
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ESt

For Steel, since there are no constraints the only stress affecting it is the 11

Strain in Silver in 22 and 33 direction are controlled by the Steel.
In the 11 direction the strains are different
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Triaxial Stresses develop due to constraint
Load to Yield Silver

Newtons P 1.5 109×=

P σ11 A⋅:=

A 1.1 1.1⋅:=

σ11 1240106⋅:=

Load to Yield Steel

 
 
 
 
 
 



Thus
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Therefore the Silver Braze yields before the Steel

Newtons P 4.031 108×=

P 403.12106⋅:=

If you had assumed that the strain in the 22 and 33 direction was 0 

Newtons P 3.443 108×=

P σ11 A⋅:=

σ11 2.845 108×=

σ11
σysAg

1

νAg νSt
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ESt
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
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:=

A 1.1 1.1⋅:=

ESt 200 1e9⋅:=

EAg 30.3 1e9⋅:=

νSt 0.3:=

νAg 0.367:=

σysAg 140 1e6⋅:=

Substituting known values

 
 
 
 
 
 
 
 
 
 
 



Problem 3 
 
The thin-walled cylinder, shown below, has an internal pressure of p = 800 kPa, and is 
subjected to a twist of T = 20 MNm. The inner radius of the cylinder is 2 m with a wall 
thickness of 20 mm. The shear stress on a thin-walled tube can be approximated by: 
 

)2/( 2trT mπτ =  
 

where T is the applied torsional moment, rm is the radius to the median line, and t is the 
thickness of the cylinder. See Figure below: 
 
 

 
  

 
a) Assuming that the ends have no effect on the stresses near the center of the 

cylinder,  
i. Determine the principal stresses 

ii. Determine the maximum shear stress 
 

b) Check for failure by plastic yielding of the cylinder using the von Mises and 
Tresca criteria.  Does the cylinder fail if the yield strength of the material used is 
150 MPa? 

  
c) If the cylinder is punctured to leave a tiny pinhole in the wall thickness, check if 

yielding will occur at the edge of the hole using the Tresca and von Mises criteria. 
The stress at the edge of the hole can be calculated using the principal stresses and 
the stress concentration factors at a hole in a pressurized cylinder. (Assume that 
the hole is small compared to the other relevant dimensions of the cylinder). 

r 
rm 

p 

t 

T T 

Y,2 

X,1 



Solution 3 – 15 points 
 

σx σ2:=

σy σ1:=

τxy τ−:=

σ1p
σx σy+( )

2
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++:= σ1p 104.18MPa=
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2
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2









2

τxy( )2
+−:= σ2p 15.82MPa=

Find Principal Angle

tan 2 θp⋅( ) 2 τ⋅

σx σy−
θp

atan
2 τxy⋅

σx σy−






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Therefore σ2 is θp 31.542deg= from the x axis
and σ1 is

θp2 θp
π
2

+:= θp2 121.542deg= from the x axis

Find Shear due to Torsion
MPa 1 106⋅ Pa⋅:=

r 2 m⋅:= t 20 10 3−⋅ m:= p 800 103⋅ Pa⋅:=

rm r
t

2
+:= rm 2.01m=

T 20 106⋅ N⋅ m⋅:=

τ
T

2 π⋅ rm
2⋅ t⋅

:= τ 3.939 107× Pa=

The shear on a unit element is negative

The stress due to pressure

σ1 p
r

t
⋅:= σ2 p

r

2 t⋅
⋅:=

σ1 80MPa= σ2 40MPa=

Find the principal stresses

 
 
 
 
 

a) 

= 39 MPa 

5 

This can also be 
“calculated” graphically 
using Mohr’s circle 

Note:  
σ1= σθθ 
σ2= σzz 
 

Additionally one can also calculate the third principle stress value, which would be equal 
to σrr ≈ 0 



 

σ 97.24MPa=

σ
1

2




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σ11 σ22−( )2
σ22 σ33−( )2

+ σ33 σ11−( )2
+ ⋅ 3 σ12

2
σ23

2
+ σ31

2
+( )⋅+:=

σ23 0 MPa⋅:=σ31 0 MPa⋅:=σ12 τxy:=σ33 0 MPa⋅:=σ22 σ1:=σ11 σ2:=

By Von Mises Criteria

Therefore the cylinder does not yieldτmax k<As can be seen from the above values, 

τmax 44.18MPa=k 75MPa=k
σy

2
:=

σy 150 MPa⋅:=

By Tresca Criterion k = τ 
b) Check for Failure 

τmax 44.18MPa=τmax
σx σy−

2
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τxy( )2
+:=

The maximum shear is:

 
 
We can also check using the prinicpal stresses

σ11 σ1p:= σ22 σ2p:= σ33 0 MPa⋅:= σ12 0 MPa⋅:= σ31 0 MPa⋅:= σ23 0 MPa⋅:=

σ 97.24MPa= σy 150MPa=

According to Von Mises σ σy< Therefore the cylinder does not yield

Cylinder does not yield 
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σy = 150MPa 

When disregarding σrr, or 52.09 MPa using 
σrr as the lowest principal stress value 

or 52.09 MPa when using σrr  

as the lowest principal stress value 



 
 

σAθθ 3 S2⋅ S1−:= σAθθ 56.72− MPa=

σBθθ 3 S1⋅ S2−:= σBθθ 296.72MPa=

At point A
Tresca 

σAθθ

2

σy

2
<

Von Mises σ σy< Therefore no yielding at point A

At Point B

Tresca 
σBθθ

2

σy

2
>

Von Mises σ σy> Therefore yielding at point B

Yielding Occurs at edge of hole

c) Hole in Cylinder 
From equations given in the exam, where S1 and S2 where the principal stresses

S1 σ1p:= S2 σ2p:=

 
 

c) Hole in cylinder 
The stress concentration factor and stresses on the hole can be calculated by 
using the principle stresses (S1 and S2, as calculated in Problem 3a) and a 
stress concentration calculation (see figure on next page). 
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The Y’-X’ coordinate system is composed of the axis belonging to the coordinate system 
in a situation where no shear stresses are present (i.e. in the principal stress state). 

 

A 

B 

S2 

S2 

S1 

S1 

X’ 

Y’ 


