Math 55: Second Midterm - Solutions

Problem 1 (15 points):

(a) How many integers between 1 and 1000 inclusive are divisible by either 4 or 21?

Since 4 and 21 are relatively prime, $lcm(4,21) = 4 \cdot 21 = 84$. Thus numbers divisible by both 4 and 21 are precisely those divisible by 84. Since the number of integers between 1 and n inclusive which are divisible by p is $\lfloor n/p \rfloor$, the answer is

$$|1000/4| + |1000/21| - |1000/84| = 250 + 47 - 11 = 286$$

by inclusion-exclusion.

(b) How many integers between 1 and 1000 inclusive are divisible by either 4 or 6?

Since lcm(4,6) = 12, numbers divisible by both 4 and 6 are precisely those divisible by 12. Thus the answer is

$$\lfloor 1000/4 \rfloor + \lfloor 1000/6 \rfloor - \lfloor 1000/12 \rfloor = 250 + 166 - 83 = 333.$$

Problem 2 (15 points): Assume n and m are integers with $n \ge m \ge 0$. How many ways are there to put n identical objects into m numbered boxes in such a way that no box is empty?

Let x_i be the number of objects in box number i, for i = 1, ..., m. Then we are asking for the number of solutions $(x_1, x_2, ..., x_m)$ to

$$x_1+x_2+\cdots+x_m=n, \qquad x_i\geq 1.$$

Begin by putting 1 object in each box; then we have n-m objects left to distribute among m boxes. Mathematically, put $x_i = 1 + y_i$ where $(y_1, y_2, ..., y_m)$ is a solution to

$$y_1 + y_2 + \cdots + y_m = n - m, \quad y_i > 0.$$

We know that the number of solutions (y_1, \ldots, y_m) is the same as the number of ways to choose n-m objects of m kinds, which is C(n-m+m-1, m-1) = C(n-1, m-1).

Problem 3 (15 points): Use the binomial theorem to compute the coefficient a_2 of x^2 in the expansion

$$\left(x+\frac{2}{x}\right)^{10} = \sum_{k=-10}^{10} a_k x^k.$$

By the binomial theorem,

$$\left(x + \frac{2}{x}\right)^{10} = \sum_{k=0}^{10} \left(\begin{array}{c} 10 \\ k \end{array}\right) x^{10-k} \left(\frac{2}{x}\right)^k = \sum_{k=0}^{10} \left(\begin{array}{c} 10 \\ k \end{array}\right) 2^k x^{10-2k}.$$

The exponent of x is 2 when 10-2k=2 or k=4, so the coefficient of x^2 is

$$2^4 \left(\begin{array}{c} 10 \\ 4 \end{array}\right) = 16 \cdot \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = 3360$$

Problem 4 (25 points): Define a sample space S by $S = \{1, 2, 3, 4, 5, 6\}$, and let the probability of any outcome x in S be p(x) = 1/6. Define random variables $f, g: S \to \mathbf{Z}$ by

$$f(x) = x \mod 2$$
, $g(x) = x \mod 3$.

(a) Calculate E(f) and E(g).

Define sets F_i and G_j by $F_i = \{f = i\}$ for i = 0, 1 and $G_j = \{g = j\}$ for j = 0, 1, 2. Then $p(F_i) = 1/2$ and $p(G_j) = 1/3$, so

$$E(f) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$$

and

$$E(g) = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 2 = 1.$$

(b) Calculate V(f) and V(g).

$$E(f^2) = \frac{1}{2} \cdot 0^2 + \frac{1}{2} \cdot 1^2 = \frac{1}{2}$$

and

$$E(g^2) = \frac{1}{3} \cdot 0^2 + \frac{1}{3} \cdot 1^2 + \frac{1}{3} \cdot 2^2 = \frac{5}{3}$$

so V(f) = 1/4 and V(g) = 2/3.

(c) Prove that f and g are independent.

We need to show that p(f = i, g = j) = p(f = i)p(g = j) or equivalently that $p(F_i \cap G_j) = p(F_i)p(G_j)$ for all i, j. Since $F_0 = \{2, 4, 6\}$, $F_1 = \{1, 3, 5\}$, $G_0 = \{3, 6\}$, $G_1 = \{1, 4\}$, $G_2 = \{2, 5\}$, we see that $|F_i \cap G_j| = 1$, so $p(F_i \cap G_j) = 1/6 = p(F_i)p(G_j)$ and f is independent of g.

(d) Calculate E(f+g) and V(f+g).

First, E(f+g)=E(f)+E(g)=1+1/2=3/2. Second, since f and g are independent, their variances add: V(f+g)=V(f)+V(g)=11/12.

Problem 5 (25 points): Consider the following pseudocode:

function f(a: integer, b: nonnegative integer) if (b = 0)

f(a, b) := 1

else if $(b \mod 2 = 0)$

f(a, b) := f(a, b / 2) * f(a, b / 2)

else

f(a, b) := a * f(a, b - 1)

(a) Evaluate f(-3, 2).

Put a = -3 and b = 2. Since b is even and nonzero, f(a, b) = f(a, b/2) * f(a, b/2) = f(-3, 1) * f(-3, 1). Since 1 is odd and nonzero, f(-3, 1) = -3 * f(-3, 1 - 1) = -3 * f(-3, 0) = -3. Thus f(-3, 2) = (-3) * (-3) = 9.

(b) What function of a and b does this code calculate?

If a = b = 0, this code returns 1. Otherwise, it returns a^b . It computes a^b recursively, using the fact that $a^b = (a^{b/2})^2$ if b is even and $a^b = a \cdot a^{b-1}$ if b is odd.

(c) Use induction to prove that your answer to (b) is correct. (Hint: Start at b = 1.)

We will use the second kind of induction, on b, with a fixed. The case b = 0 is clear, so we will start at b = 1.

Base: b = 1. Then f(a, b) = a * f(a, 0) = a is correct since $a^1 = a$.

Induction step: Consider two cases.

Case 1: b is even. Then by the induction hypothesis, $f(a, b/2) = a^{b/2}$, so we have $f(a, b) = (a^{b/2})^2 = a^b$.

Case 2: b is odd. Then by the induction hypothesis, $f(a, b-1) = a^{b-1}$, so we have $f(a, b) = a * a^{b-1} = a^b$.