961 Evans Hall	First Midterm – makeup version	10:10-11:00 AM
George M. Bergman	Fall 1996, Math 53	2 Oct., 1996
10/04/2001 THU 15:16 FAX 6434330	MOFFITT LIBRARY	Ø 001

1. (25 points) Let C be the curve given by the parametric equations $x = \sin \theta$, $y = 2\cos \theta$, $0 \le \theta < \pi/2$.

(a) (13 points) Describe C by an equation expressing y as a function of x, with restrictions on the values of x if necessary, and sketch the curve.

(b) (12 points) Find an equation for the line that is tangent to C at the point having parameter θ .

2. (25 points) Let f be a continuously differentiable real-valued function on the interval $[0, 2\pi]$. Show that the space curve given by the parametric equations x = f(t), $y = \sin t$, $z = \cos t$, $0 \le t \le 2\pi$ has the same arc-length as the plane curve y = f(x), $0 \le x \le 2\pi$. You may assume formulas for arc length given in Stewart.

3. (25 points) Calculate the area of the surface gotten by rotating about the x-axis the plane curve

 $x = t - (t^3/3), \quad y = t^2, \quad 0 \le t \le 1.$

4. (25 points) Suppose f(x, y) is a real-valued function of two variables, defined for all real numbers x and y.

(a) (7 points) Given a point (x_0, y_0) , and a real number L, define what it means for $\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$ to hold.

(b) (7 points) Define what it means for f to be continuous at (x_0, y_0) .

(c) (11 points) Let f be the function defined by the formulas f(x, y) = x if $x^2 + y^2 \le 1$, f(x, y) = y if $x^2 + y^2 > 1$. At what points is f continuous, and at what points is it discontinuous? The answer will involve more than one case; explain the reason for at least *one* case of your answer.