Do not write here

Math 16B, Final Exam, Fall 1996 R. Hartshorne

Part I. Shorter questions. Show work and put answers in boxes. 3 points each. No partial credit. No credit without work shown.

1. Find
$$\frac{\partial}{\partial x} \left(\frac{\sin x + \cos y}{\sin x - \cos y} \right)$$
 and simplify.

Ι,	2	3	4)	!	
6	7	8	9	10		
1			<u> </u>	į		
2						
3						
4						
5						
6						
7						
otal						

2. Find $\int x^2 e^{-x} dx$.

	1
	1
	1
	1

3. Find $\int_{e}^{e^2} \frac{dx}{x \ln x}$

		l
		- 1
		1
		ı
		- 1

4. Find $\int_0^\infty xe^{-x^2}dx$.

5. Use the fact that a circle of radius r has area $A=\pi r^2$ to find the area of the ellipse $9x^2+25y^2=225$.

6. If y' = 3t + ty and y(0) = 5, find y = f(t).

7. If $y' = 3t + t^2$ and y(0) = 5, find y = f(t).

8. Find the rational number, in lowest terms, whose decimal expansion is .027027027...

9. Find the sum of the infinite series $2 + \frac{4}{5} + \frac{8}{25} + \frac{16}{125} + \frac{32}{625} + \dots$

10. Use a Taylor series to approximate the definite integral $\int_0^{0.1} e^{x^2} dx$ to ten decimal places.

Part II. Longer questions. 10 points each. Show your work and put answers in boxes. No credit without work.

- 1. Let $f(x,y) = 2x^2 x^4 y^2$.
 - (a) Find all points at which f(x, y) has a potential relative maximum or minimum.
 - (b) Use the second derivative test at each of the points found in part (a) above, to determine whether the function has a relative maximum, a relative minimum. neither of these, or no conclusion from the test.

- 2. Integrate
 - (a) $\int \sin^3 x \, dx$. Hint: Use the identity $\sin^2 x + \cos^2 x = 1$.

(b) $\int x \sec^2 x \ dx.$

3

- 3. Consider the differential equation $y' = y^2 3y 4$.
 - (a) Draw the graph of $z = y^2 3y 4$ in the yz-plane.

(b) Sketch solutions of the differential equations in the ty-plane, showing constant solutions and the solutions with initial conditions y(0) = 0 and y(0) = 3. Indicate where the solutions are concave up, or concave down, and mark any inflection points.

4. Find the first three nonzero terms of the Taylor series for $f(x) = \tan x$ around x = 0. (Be sure to write your answer in simplest form.)

- 5. Given the Taylor series $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$
 - (a) Find the first five terms of the Taylor series for ln(1+2x).

(b) Find the function (in simplest form) whose Taylor series is $2+3x+4x^2+5x^3+6x^4+\ldots$ Hint: compare to the derivative of the series for 1/(1-x).

- 6. The XYZ musical instrument company plans to make x xylophones and y yellow synthesizers. Because of restrictions on the time of the expert technicians and the raw materials needed, x and y must satisfy the equation $4x^2 + 25y^2 = 50,000$. The company makes of profit of \$20 for each xylophone and \$100 for each yellow synthesizer.
 - (a) Find the production levels x and y which will maximize profits, and

(b) Find the resulting profit to the company.

- 7. Suppose that your parents set up a fund for your college education. They deposit \$40,000 into a bank account on January 1st of your first year. (We will assume for simplicity that you start school in January.) This account earns interest, compounded continuously, at a rate of 6% per year. You have to make continuous withdrawals at the rate of \$1,000 per month to pay for your tuition, room and board, etc. (We will also assume that your expenses are spread out evenly throughout the year.)
 - (a) Write a differential equation for y = the amount of money in the account at time t in years.

(b) Solve the equation to find the function y = f(t).

(c) Now answer this question: Will you be able to complete four years of college with this fund, or will you have to get a job to supplement your income? If the money will run out before the end of four years, in which month of which year will that happen?

