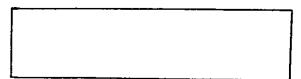
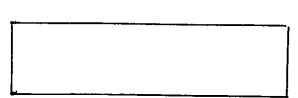
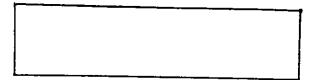

Name____

·	TA's	Name		
	Secti	on		
Math 16B R. Hartshorne	Final Exam, December 11, 2003		Do Not Write Here	
Part I. Shorter questions Show work and put a No partial credit. All in simplest form. No may leave expression in answers. 1. Find $\frac{\partial}{\partial y} \left(\frac{\sin x + \sin x - \sin x}{\sin x - \sin x} \right)$	l answers must be calculators. You is such as π , e , $\sqrt{2}$		7 8 9 10 11 12 1 2 3 4 Total	
	$-\frac{\pi}{2} < t < \frac{\pi}{2}$, find $\tan t$.	2.		
and the x -axis.	the between the curve $y = \frac{1}{x^2 + 1}$ and $y = f(t)$.	-4 3. 4.		
			•	

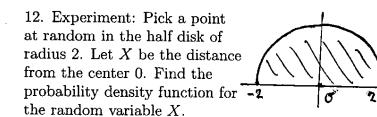

$$5. \int x^2 \sin x \ dx =$$


6.
$$\int \cos^3 x \ dx =$$


7. Use the Taylor series for $\sin x$ to compute $\sin(0.3)$ to 6 decimal places.

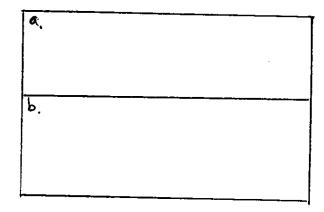
8. Find the 5th Taylor polynomial of $y = \tan x$. Reduce fractions to lowest terms.

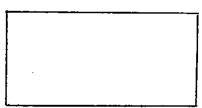
9. Use two iterations of the Newton–Raphson algorithm, starting with $x_0 = 2$, to find an approximation for $\sqrt{3}$. Leave your answer as a fraction in lowest terms.


10. Find the sum of the infinite series

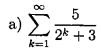

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \dots + \frac{1}{6^n} + \dots$$

Leave your answer as a fraction in lowest terms.

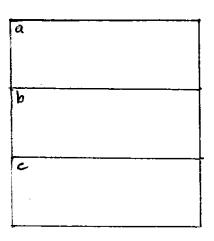

11. Find the rational number (as a fraction in lowest terms) whose decimal is $0.135135\overline{135}...$



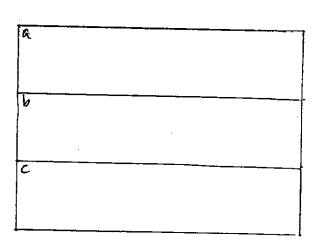
Part II. Longer problems. 10 points each. Show your work. Put answers in boxes.


- 1. Evaluate $\int_0^{\frac{1}{2}} \sqrt{1-x^2} \ dx.$
- a) Make a trigonometric substitution, and write the new integral with new limits of integration.
- b) Evaluate the integral to find the answer.

2. Find the maximum value attained by the function $y = 4 \sin x + 3 \cos x$ on the interval $0 \le x \le \pi$.



3. For each of the following, determine if the infinite series converges or diverges. State which method you use and show your work.



$$b) \sum_{k=1}^{\infty} \frac{5}{2k+3}$$

c)
$$\sum_{k=1}^{\infty} \frac{5}{k^2 + 3}$$

- 4. a) Find the Taylor series for $f(x) = \frac{1}{1+x}$.
 - b) Find the Taylor series for ln(1+x).
 - c) Find the Taylor series for $\frac{\ln(1+x^2)}{x^2}$.

