Math 114 Final 2003 May 23. R. Borcherds

Please make sure that your name is on everything you hand in. You are allowed calculators and 1 sheet of notes. All questions have about the same number of marks.

1. Find polynomials a(x), b(x) in Q[x] such that

$$(x^4 + x)a(x) + (x^2 + 1)b(x) = 1$$

- 2. Prove that there exist irreducible polynomials over Q of arbitrarily large degree. (One way to do this is to use Eisenstein's criterion.)
- 3. If α is a root of $x^3 3x + 1$ show that $1/(1 \alpha)$ is also a root. Use this to show that over any field $x^3 3x + 1$ is either irreducible or splits into the product of 3 linear factors. What is the Galois group of this polynomial over Q?
- 4. Find the Galois group of the splitting field of $x^4 2$ over Q. What is its order? Is it abelian? Is it cyclic?
- 5. Give an example of a field of characteristic p > 0 such that the Frobenius automorphism $x \mapsto x^p$ is not onto.
- 6. Prove that the Galois group of $GF(p^n)$: GF(p) is cyclic of order n, and describe a generator of it. $(GF(p^n))$ is the finite field of order p^n .)
- 7. Find the conjugacy classes of the dihedral group D_{10} of order 10.
- 8. What is the Galois group of $x^7 1$ over Q?
- 9. Construct a field with 16 elements.
- 10. Prove that the additive group of any finite field of order p^n (p prime) is a product of n cyclic groups of order p.