MATH 113: INTRODUCTION TO ABSTRACT ALGEBRA (Section 4) Final Examination December 12, 2002 K. Ribet

- Please be sure to justify your answers, unless instructed otherwise.
- O Do all five problems. Within each problem, you may use any preceding parts to answer a question, but not conversely.
- Organization matters. If your answers are scattered around, please let me know.
- Please label your answers.
- Please write legibly; if I cannot read your answers, then I cannot give you points.

Good luck!

- 1. (a) (2 points) Is the alternating group A_5 simple? Just answer yes or no.
 - (b) (4 points) Let $\sigma = (12345) \in A_5$. Let H be the subgroup generated by σ . Express the non-identity elements of H as products of disjoint cycles.
 - (c) (4 points) Let H be as above. Is H normal in A_5 ? If so, then prove the statement. If not, then give an example of $\tau \in A_5$ such that $\tau \sigma \tau^{-1} \notin H$.
 - (d) (4 points) Consider the set of cosets A_5/H . If H were normal in A_5 , then the operation on A_5/H given by

$$(\tau_1 H)(\tau_2 H) = (\tau_1 \tau_2) H$$

would be well-defined. Either prove that the operation is well-defined or give an example where the operation is ill-defined. (Hint: Use part (c).)

- 2. We have previously classified all finite groups of order ≤ 7. In fact, we have also seen all groups of order 8; this problem will guide you to recall, in the Platonic sense, what they are.
 - (a) (5 points) State the Fundamental Theorem for Finitely Generated Abelian Groups, and prove that $\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_{mn}$ iff m and n are coprime positive integers.
 - (b) (4 points) Using part (a), determine all non-isomorphic abelian groups of order 8.
 - (c) (4 points) Let G be a non-abelian group of order 8, and Z its center. To which group is Z isomorphic? (Note: You may state and use any theorem you wish; in particular, you may want to recall a theorem from the second midterm.)
 - (d) (4 points) Show that the quotient group G/Z is isomorphic to the Klein-4 group.
 - (e) (6 points) Let $G/Z = \{eZ, aZ, bZ, (ab)Z\}$ and $Z = \{e, u\}$, where e is the identity in G. Show that, up to isomorphism, the only possible multiplication rules for a, b, ab in G are ab = uba and either

$$a^2 = u$$
, $b^2 = u$, and $(ab)^2 = u$

or

$$a^2 = e$$
, $b^2 = e$, and $(ab)^2 = u$.

(Remark: Now, you should be able to recall that these two groups correspond to the group of quarternions and the dihedral group D_4 .)

- 3. (a) (4 points) Let $\phi_a: \mathbb{Z}_{10}[x] \to \mathbb{Z}_{10}$ be an evaluation homomorphism at $a \in \mathbb{Z}_{10}$. Evaluate $\phi_7(x^{2002} + x^{12} + 2)$.
 - (b) (4 points) Is $113x^5 + 4x^4 + 2002x^3 + 12x^2 + 12x + 10$ irreducible or reducible over \mathbb{Q} ?
 - (c) (4 points) Let D be an integral domain and $I \leq D$ an ideal. Is D/I always an integral domain? If so, then prove the statement; if not, then give a counter-example.
 - (d) (4 points) Are there any primitive 14th roots of unity in the Galois field \mathbb{Z}_{113} ? If so, why and how many?
- 4. (a) (5 points) Let R be a commutative ring with $1 \neq 0$. Prove that R is an integral domain if and only if the zero ideal $I = \{0\}$ is a prime ideal in R.
 - (b) (5 points) Let R be a commutative ring and I an ideal in R. Prove that the radical \sqrt{I} of I defined by

$$\sqrt{I} = \{ a \in R \, | \, a^n \in I \text{ for some } n \in \mathbb{Z}_{>0} \}$$

is an ideal in R.

- (c) (5 points) Let P be a prime ideal in a commutative ring R. Prove that the radical ideal \sqrt{P} is equal to P.
- 5. Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.
 - (a) (4 points) Find the irreducible polynomial $irr(\alpha, \mathbb{Q})$ for α over \mathbb{Q} .
 - (b) (4 points) What is the degree of the extension field $\mathbb{Q}(\alpha)$ over \mathbb{Q} ?
 - (c) (4 points) Find a basis of $\mathbb{Q}(\alpha)$ as a vector space over \mathbb{Q} .
 - (d) (4 points) Express α^6 in the basis you have found in (c).
 - (e) (4 points) Find the irreducible polynomial $irr(2^{1/3}, \mathbb{Q})$ for $2^{1/3}$ over \mathbb{Q} , and thus prove that $2^{1/3} \notin \mathbb{Q}(\alpha)$.
 - (f) (4 points) Prove that the polynomial $irr(2^{1/3}, \mathbb{Q})$ in part (d) is also irreducible over $\mathbb{Q}(\alpha)$.
 - (g) (4 points) Find the degree of the extension field $\mathbb{Q}(\alpha, 2^{1/3})$ over \mathbb{Q} .
 - (h) (4 points) Find a basis of $\mathbb{Q}(\alpha, 2^{1/3})$ as a vector space over \mathbb{Q} .