George M. Bergman

Spring 1999, Math 113, Section 2

26 February, 1999

5 Evans Hall

First Midterm

1:10-2:00 PM

- 1. (35 points, 7 points apiece) Find the following.
- (a) $[83]_8 \cdot [55]_8 + ([40]_8)^3$, expressed in the form $[r]_8$ with $0 \le r < 8$.
- (b) The multiplicative inverse of $[9]_{20}$ in \mathbb{Z}_{20} .
- (c) $(1,2,3,4)^2$, expressed as a product of disjoint cycles in S_4 .
- (d) The equivalence class [-2] of -2 under the equivalence relation \sim on \mathbb{R} induced by the function $f(x) = x^2$. (List or describe the elements of [-2] within set brackets $\{ \}$.)
- (c) The cyclic subgroup of S_8 generated by the element (1,3,5)(2,4,6). (List the elements within set brackets $\{ \}$.)
- 2. (31 points) Suppose I is a subset of \mathbb{Z} which contains at least one positive integer and is closed under addition and subtraction. Prove that there is some positive integer b such that $I = b\mathbb{Z}$ (where $b\mathbb{Z}$ means $\{b \mid n \in \mathbb{Z}\}$).

(The above is a part of the proof of a result from the reading. In proving it, you may assume the Well-Ordering Principle and the Division Algorithm, but not later results about the integers.)

- 3. (34 points) In each part below, either give an example, and indicate very briefly why it satisfies the given condition, or show that no such example can exist. (Recall that a group G is called *abelian* or *commutative* if for all $x, y \in G$ one has xy = yx.)
- (a) (9 points) A nonabelian group G having an abelian subgroup $K \subseteq G$.
- (b) (9 points) An abelian group G having a nonabelian subgroup $K \subseteq G$.
- (c) (8 points) A binary operation * on a set S, and a subset $T \subseteq S$ which is not closed under *.
- (d) (8 points) An element of order 15 in $S_3 \times \mathbb{Z}_{10}$.