George M. Bergman 5 Evans Hall Fall 2002, Math 113, Sec. 5 Second Midterm 28 Oct., 2002 3:10-4:00

- 1. (27 points, 9 points each.) Find the following. If the answer to a question is a set, you should give it by listing or describing its elements in set brackets, $\{ \dots \}$.
- (a) The kernel of the homomorphism from \mathbb{Z} to D_{10} (the group of symmetries of a pentagon) taking each $n \in \mathbb{Z}$ to rotation by $n(4\pi/5)$ radians.
- (b) The coset of A_3 in S_3 that contains (1 2).
- (c) The number of fixed points of σ^3 , if σ is an element of S_n whose complete cycle decomposition consists of a cycles of length 3, b cycles of length 2, and n-3a-2b cycles of length 1.
- 2. (36 points; 9 points each.) For each of the items listed below, either give an example, or give a brief reason why no example exists. (If you give an example, you do not have to prove that it has the property stated. Examples should be specific for full credit; i.e., even if there are many objects of a given sort, you should name one.)
- (a) A simple non-cyclic group.
- (b) A subgroup of $\mathbb{Z} \times \mathbb{Z}$ that is not normal.
- (c) An injective (i.e., one-to-one) homomorphism $f: \mathbb{Z} \to \mathbb{R}^{\times}$. (Recall that \mathbb{R}^{\times} denotes the group of nonzero real numbers under multiplication.)
- (d) A group G and a subgroup H, such that H is not the kernel of any homomorphism with domain G.
- 3. (14 points.) Let G and H be groups, $f: G \to H$ an injective (i.e., one-to-one) homomorphism, and $g \in G$ an element of finite order n. Show that f(g) also has order n.
- **4.** (14 points.) Let G be a group. Recall that Z(G), the center of G, means $\{z \in G : \forall g \in G, zg = gz\}$. Show that Z(G) is a subgroup of G. (Rotman describes this as "easy to see". I am asking you to supply the details.)
- 5. (9 points.) Let G be a group which acts on a set X, and let $x, y \in X$. Show that if $\mathcal{O}(x)$ and $\mathcal{O}(y)$ have an element in common, then they are equal. (Recall that $\mathcal{O}(x)$ denotes $\{gx: g \in G\}$. The result you are to prove is part of a result proved by Rotman, that X is the disjoint union of the orbits. Hence you may not call on that result in proving this.)