George M. Bergman

Fall 2001, Math 113, Sec. 3

2 Nov., 2001

70 Evans Hall

Second Midterm

11:10-12:00

- 1. (32 points, 8 points apiece) Complete the following definitions. In defining any term, you may use terms defined before it in the text.
- (a) If $\varphi: G \to H$ is a homomorphism of groups, then the kernel of φ (denoted $\ker(\varphi)$) means
- (b) If G is a group, then the center of G (denoted Z(G)) means
- (c) If V is a vector space, then a basis of V means
- (d) If F is a field and f(x), g(x) are nonzero polynomials over F, then the greatest common divisor of f(x) and g(x) (denoted gcd(f(x), g(x))) means the unique monic polynomial a(x) such that
- **2.** (36 points; 9 points each.) For each of the items listed below, either *give an example*, or give a brief reason why *no example exists*. (If you give an example, you do *not* have to prove that it has the property stated.)
- (a) A polynomial $f(x) \in \mathbb{Q}[x]$ which is reducible over \mathbb{Q} , but has no root in \mathbb{Q} .
- (b) A polynomial $f(x) \in \mathbb{Z}[x]$ which has a root in \mathbb{Q} but no root in \mathbb{Z} .
- (c) Two nonisomorphic abelian groups of order 10.
- (d) Groups G and H, a homomorphism $\varphi \colon G \to H$, and an element $g \in G$ such that g has infinite order, and $\varphi(g)$ has order 3.
- 3. (12 points) Suppose G is a group which acts on a set S, and s is an element of S. Recall that G_S denotes $\{g \in G \mid gs = s\}$.

Prove that for any $a \in G$ one has $G_{as} = a G_s a^{-1}$.

4. (20 points) Let G be a group and N a normal subgroup of G. Show that G/N is abelian if and only if for all $a, b \in G$, one has $aba^{-1}b^{-1} \in N$.

(If you correctly derive a necessary and sufficient condition close to this, but do not succeed in transforming it to precisely the above form, you will get appropriate partial credit.)