## Math 113: Introduction to Abstract Algebra Midterm March 15th, 2002 Weingart

| Name:      | <br>, |  |
|------------|-------|--|
|            |       |  |
| Signature: |       |  |

There are 9 problems on this midterm worth 100 points of 400 for the class in total. The first 5 problems are each worth 8 points for the correct answer, whereas the last 4 problems are more difficult and worth 15 points each. You must show your work to get any credit for the last 4 problems. Successful midterm!

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total |
|---|---|---|---|---|---|---|---|---|-------|
|   | • | • |   |   |   |   |   |   |       |
|   |   |   |   |   |   |   |   |   |       |
|   |   |   |   |   |   |   |   |   |       |

| Problem : | 1: (8 | points) |
|-----------|-------|---------|
|-----------|-------|---------|

How many elements of the cyclic group  $\mathbb{Z}_{15}$  have order 15?

- $\square$   $\mathbb{Z}_{15}$  has 8 elements of order 15.
- $\square$   $\mathbb{Z}_{15}$  has 10 elements of order 15.
- $\square$   $\mathbb{Z}_{15}$  has 14 elements of order 15.

## Problem 2: (8 points)

How many different homomorphisms  $\phi: \mathbb{Z}_6 \longrightarrow \mathbb{Z}_4$  are there?

- $\square$  There is only the trivial homomorphism from  $\mathbb{Z}_6$  to  $\mathbb{Z}_4$ .
- $\square$  There are exactly two different homomorphisms from  $\mathbb{Z}_6$  to  $\mathbb{Z}_4$ .
- $\square$  There are exactly four different homomorphisms from  $\mathbb{Z}_6$  to  $\mathbb{Z}_4$ .

## Problem 3: (8 points)

The symmetric group  $S_n$ ,  $n \geq 2$ , acts on the cartesian product  $\{1, 2, \ldots, n\} \times \{1, 2, \ldots, n\}$  by

$$\sigma \bullet (k, l) := (\sigma(k), \sigma(l))$$

for all  $k, l \in \{1, 2, ..., n\}$ . Is this action transitive?

- $\square$  Yes, because  $S_n$  acts transitively on  $\{1, 2, \ldots, n\}$ .
- $\square$  No, because this is no well-defined group action.
- No, because this action has exactly two orbits.

|                              | (8 points) rem says that every group $G$ is isomorphic to a subgroup of a symmetric group precisely is this $n$ for the alternating group $A_4$ ? |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Cayley's Theorem identifies $A_4$ with a subgroup of $S_4$ .                                                                                      |
|                              | Cayley's Theorem identifies $A_4$ with a subgroup of $S_8$ .                                                                                      |
|                              | Cayley's Theorem identifies $A_4$ with a subgroup of $S_{12}$ .                                                                                   |
| Problem 5:<br>Which of the f | (8 points) ollowing natural numbers is NOT the order of any element of $S_7$ ?                                                                    |
|                              | 9 is not the order of any element of $S_7$ .                                                                                                      |
|                              | 10 is not the order of any element of $S_7$ .                                                                                                     |
|                              | 12 is not the order of any element of $S_7$ .                                                                                                     |

## Problem 6: (15 points)

Let H be a subset of a group G. In order to check whether H is a subgroup of G or not you have to verify three properties of H namely:

Problem 7: (15 points)

Consider the permutation  $\sigma := (1,3,2) \circ (1,8,6) \circ (4,6,7,8)$  in  $S_8$ . What is its signature  $\operatorname{sgn} \sigma$ ? Find the orbits of  $\sigma$  and calculate its order.

Problem 8: (15 points)

Consider a group  $\hat{G}$  and the map  $\phi: G \longrightarrow G$ ,  $g \longmapsto g * g$ . Prove that  $\phi$  is a group homomorphism if and only if G is a commutative group.

Problem 9: (15 points)

One of the homework problems asked you to show that every  $g \in G$  defines an automorphism  $\mathrm{Ad}_g(x) := g * x * g^{-1}$  of G (which is trivial for a commutative group G of course). Find the kernel of the group homomorphism

$$Ad: G \longrightarrow Aut G, g \longmapsto Ad_g$$

mapping  $g \in G$  to  $\mathrm{Ad}_g$  and give this kernel an appropriate name.