George M. Bergman

Fall 2002, Math 113, Sec. 5

30 Sept., 2002

5 Evans Hall

First Midterm

3:10-4:00

- 1. (21 points, 7 points each.) Find the following.
- (a) An expression for $(1\ 2\ 3\ 4\ 5\ 6)^2$ as a product of disjoint cycles in S_7 .
- (b) The g.c.d. (3399, 9785).
- (c) The integer r such that $0 \le r < 13$ and $95^{13} \equiv r \mod 13$.
- 2. (28 points; 7 points each.) Complete the following definitions. (In each definition, you can use without defining them any terms or symbols that were defined in the text before that definition.)
- (a) Given integers a, b and m, we write $a \equiv b \mod m$ if ...
- (b) Given a function $f: X \to Y$, an *inverse* to f means a function g with domain ____ and target ____, such that ...
- (c) If r and n are positive integers, a permutation $\sigma \in S_n$ is called an r-cycle if ...
- (d) A group G with operation * is called *abelian* if ...
- **3.** (24 points; 7 points each.) For each of the items listed below, either *give an example*, or give a brief reason why *no example exists*. (If you give an example, you do *not* have to prove that it has the property stated.)
- (a) Two positive integers a and b, neither of which is divisible by 8, but whose product is divisible by 8.
- (b) Scts X, Y and Z, and functions $f: X \to Y$, $g: Y \to X$, such that $g \circ f$ is bijective, but f is not.
- (c) Transpositions τ_1 , τ_2 , $\tau_3 \in S_4$ such that $(1\ 2\ 3) = \tau_1 \tau_2 \tau_3$.
- 4 (27 points). Prove the following result from the text. You may assume in your proof results proved in the text before it, but not results proved after it.

Theorem (Euclid's Lemma). If p is a prime and a, b are integers such that $p \mid ab$, then $p \mid a$ or $p \mid b$.