113 mid-term: The Pentagon and Hexagon Groups March 19, 2002 Name L. Beetholdi | under addition); S_n , the group of permutations of n points; and D_n , the p symmetries of a regular n -gon. In a question "XXX is isomorphic to, the answer is of C_n , D_n , S_n . Complete: 1. The cardinality of C_n is 2. The cardinality of S_n is 3. The cardinality of D_n is 4. The largest cyclic subgroup of D_n has cardinality 5. The center of C_n has cardinality 6. The derived subgroup of C_n has cardinality 7. The center of D_5 is isomorphic to 8. The derived subgroup of D_5 is isomorphic to 9. The center of D_6 is isomorphic to 10. The derived subgroup of D_6 by its center is isomorphic to 11. The biggest n such that C_n is a subgroup of D_n is 12. The biggest n such that C_n is a quotient of D_5 is 13. The biggest n such that C_n is a quotient of D_6 is 14. Can C_6 be a subgroup of S_5 ? Explain in at most 2 lines. | | Name: L. Bartholdi | |---|--------------------|--| | The cardinality of S_n is | inde
of sy
I | n a question "XXX is isomorphic to", the answer is one of | | The cardinality of D_n is The largest cyclic subgroup of D_n has cardinality The center of C_n has cardinality The derived subgroup of C_n has cardinality The center of D₅ is isomorphic to The derived subgroup of D₅ is isomorphic to The quotient D₆/Z(D₆) of D₆ by its center is isomorphic to The derived subgroup of D₆ is isomorphic to The biggest n such that C_n is a subgroup of D_n is The biggest n such that C_n is a quotient of D₅ is Can C₆ be a subgroup of S₅? Explain in at most 2 lines. Can C₄ be a quotient of S₄? Explain in at most 2 lines. Complete, and explain in at most 2 lines: Complete, and explain in at most 2 lines: | 1. | The cardinality of C_n is | | The largest cyclic subgroup of D_n has cardinality | 2. | The cardinality of S_n is | | The center of C_n has cardinality The derived subgroup of C_n has cardinality The center of D₅ is isomorphic to The derived subgroup of D₅ is isomorphic to The center of D₆ is isomorphic to The quotient D₆/Z(D₆) of D₆ by its center is isomorphic to The derived subgroup of D₆ is isomorphic to The biggest n such that C_n is a subgroup of D_n is The biggest n such that C_n is a quotient of D₅ is The biggest n such that C_n is a quotient of D₆ is Can C₆ be a subgroup of S₅? Explain in at most 2 lines. Can C₄ be a quotient of S₄? Explain in at most 2 lines. Complete, and explain in at most 2 lines: Let G act on a set X. The stabilizer of a point x is equal to G if | 3. | The cardinality of D_n is | | The derived subgroup of C_n has cardinality | 4. | The largest cyclic subgroup of D_n has cardinality | | 7. The center of D₅ is isomorphic to | 5. | The center of C_n has cardinality | | 8. The derived subgroup of D₅ is isomorphic to | 6. | The derived subgroup of C_n has cardinality | | The center of D₆ is isomorphic to | 7. | The center of D_5 is isomorphic to | | The quotient $D_6/Z(D_6)$ of D_6 by its center is isomorphic to | 8. | The derived subgroup of D_5 is isomorphic to | | 11. The biggest n such that C_n is a subgroup of D_n is | 9. | | | 12. The biggest n such that C_n is a quotient of D₅ is 13. The biggest n such that C_n is a quotient of D₆ is 14. Can C₆ be a subgroup of S₅? Explain in at most 2 lines. 15. Can C₄ be a quotient of S₄? Explain in at most 2 lines. 16. Complete, and explain in at most 2 lines: "Let G act on a set X. The stabilizer of a point x is equal to G if | 10. | The derived subgroup of D_6 is isomorphic to | | 13. The biggest n such that C_n is a quotient of D₆ is 14. Can C₆ be a subgroup of S₅? Explain in at most 2 lines. 15. Can C₄ be a quotient of S₄? Explain in at most 2 lines. 16. Complete, and explain in at most 2 lines: "Let G act on a set X. The stabilizer of a point x is equal to G if | 11. | The biggest n such that C_n is a subgroup of D_n is | | 14. Can C₆ be a subgroup of S₅? | 12. | The biggest n such that C_n is a quotient of D_5 is | | Explain in at most 2 lines. 15. Can C₄ be a quotient of S₄? | 13. | The biggest n such that C_n is a quotient of D_6 is | | Explain in at most 2 lines. 16. Complete, and explain in at most 2 lines: "Let G act on a set X . The stabilizer of a point x is equal to G if | 14. | | | Explain in at most 2 lines. 16. Complete, and explain in at most 2 lines: "Let G act on a set X . The stabilizer of a point x is equal to G if | | \$ | | "Let G act on a set X . The stabilizer of a point x is equal to G if | 15. | | | | 16. | "Let G act on a set X . The stabilizer of a point x is equal to G if and |