prove this.) reasoning. George M. Bergman 5 Evans Hall ## MOFFITT LIBRARY Spring 1997, Math 113, Lecture 3 4 April, 1997 **Second Midterm Exam** 1:10-2:00 PM | 1. (30 points) Mark statements T (true) or F (false). A meaningless statement should be considered false. Each correct answer will count 2 points, each incorrect answer -2 points, each unanswered item 0 points. | |---| | Every group of order 11 is abelian. | | S_4 has an element of order 8. | | If G and G' are abelian groups, so is the product group $G \times G'$. | | If a product group $G \times G'$ is abelian, so are G and G' . | | Every homomorphism of groups is a one-to-one map. | | If G is a group, and $a \in G$, then the map $\varphi_a \colon G \to G$ defined by $\varphi_a(g) = ag$ is an automorphism of G . | | If G is a group, and $a \in G$, then the map $\varphi_a \colon G \to G$ defined by $\varphi_a(g) = aga^{-1}$ is an automorphism of G. | | The kernel of every group homomorphism $\varphi \colon G \to G'$ is a subgroup of G . | | The image of every group homomorphism $\varphi \colon G \to G'$ is a normal subgroup of G' . | | Every group is isomorphic to a subgroup of the group of permutations of some set. | | A_8 is a simple group. | | $A_7 \times A_7$ is a simple group. | | S_{11} is a simple group. | | If x is an element of a G -set X , then the orbit Gx and the isotropy subgroup G_x are isomorphic to each other. | | If G is a group and X a set, and for each $g \in G$ and $x \in X$ we define $gx = x$, this makes X a G-set. | | 2. (30 points) Suppose G is a group, H a subgroup, and g_1 , g_2 elements of G . Show that $g_1H=g_2H$ if and only if $g_1^{-1}g_2 \in H$. (You may use any results proved in the reading, if you state clearly what the results you are calling on are.) | | 3. (25 points) Let G be a group, let X be a G -set, and let $x \in X$. We recall that G_X is defined to be $\{g \in G \mid gx = x\}$, and called the "isotropy subgroup of x ". Prove that G_X is indeed a subgroup of G . | | 4. (15 points) Suppose G is a group and X and Y are two G -sets. Let us make the set $X \times Y$ a G -set by defining $g(x,y) = (gx,gy)$ for $x \in X$, $y \in Y$, $g \in G$. (Take for granted that this <i>does</i> determine a structure of G -set on $X \times Y$; i.e., you are not being asked to | For any $x \in X$ and $y \in Y$, show how $G_{(x,y)}$ (the isotropy subgroup of the element $(x,y) \in X \times Y$) can be described in terms of the subgroups G_x and G_y . Show your