MAT 110 - MIDTERM 9/27/02 D. Geba

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ the linear transformation defined by

$$T(x, y, z) = (x + y + z, x + 3y + 5z).$$

- a) Find N(T), R(T) and compute dim N(T), dim R(T).
- b) Let β and γ the standard bases for \mathbb{R}^3 and \mathbb{R}^2 respectively. Consider also $\alpha = \{(1,1,1), (2,3,4), (3,4,6)\}$ basis for \mathbb{R}^3 .

Compute Q the change of coordinate matrix from β to α and the representation matrices $[T]_{\alpha}^{\gamma}, [T]_{\beta}^{\gamma}$.

Check that

$$[T]^{\gamma}_{\alpha} \cdot Q = [T]^{\gamma}_{\beta}.$$

2. Let V and W two vector spaces over the rational numbers field $\mathbb Q$ and $T:V\to W$ which satisfies

$$T(x+y) = T(x) + T(y).$$

Prove that T is a linear transformation.

- 3. Let m and n two positive integers. Construct a linear transformation T such that $\operatorname{nullity}(T) = m$ and $\operatorname{rank}(T) = n$.
- 4. Let $T: V \to V$ a linear transformation, where V is a finite-dimensional vector space. Prove that if $\operatorname{rank}(T) = \operatorname{rank}(T^2)$ then $R(T) \cap N(T) = \{0\}$.
- 5. Let A, B two square matrices, $A, B \in M_{n \times n}(\mathbb{R})$ such that $I_n AB$ is invertible. Prove that $I_n BA$ is invertible.