MATH 110-1 Linear Algebra Spring 2000 1. Novik

Midterm I

- 1. (18pts) This part consists of 6 questions. Each question is worth 3pts. In each question give an example with the required properties or explain why such an example does not exist.
 - (a) A vector space over **R** of dimension 100.
 - (b) Two isomorphic vector spaces, one of which has dimension 17 and the second one has dimension 13.
 - (c) A linear transformation $T: P_4(\mathbf{R}) \to M_{2\times 2}(\mathbf{R})$ which is one-to-one.
 - (d) A generating set for $P_2(\mathbf{R})$ which is not a basis.
 - (e) An infinite-dimensional vector space.
 - (f) A linear transformation $T: \mathbf{R}^{80} \to \mathbf{R}^{170}$ of rank 90.

2. (16pts) Suppose that V is a vector space of dimension 9 and that W is a vector space of dimension 11. Let T be a linear transformation

$$T: L(V, W) \to L(V, W).$$

Show that the nullity of T cannot equal the rank of T.

3. (16pts) Let V be a vector space over \mathbf{R} . Prove that every non-zero linear transformation $T:V\to\mathbf{R}$ is onto, and that every non-zero linear transformation $S:\mathbf{R}\to V$ is one-to-one.

- 4. (50pts) Let W_1, W_2 be subspaces of a vector space V. Define the sum of W_1 and W_2 , denoted $W_1 + W_2$, to be the set $\{x + y \mid x \in W_1 \text{ and } y \in W_2\}$.
 - (a) (10pts) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .
 - (b) (10pts) Let B_1 be a basis for W_1 , let B_2 be a basis for W_2 , Show that $B_1 \cup B_2$ generates $W_1 + W_2$.
 - (c) (20pts) Suppose that B_1 and B_2 are disjoint. Prove that $B_1 \cup B_2$ is a basis for $W_1 + W_2$ if and only if $W_1 \cap W_2 = \{0\}$.
 - (d) (10pts) Prove that if V is finite-dimensional, then

$$\dim(W_1+W_2)\leq\dim(W_1)+\dim(W_2).$$

When does equality hold?