MATH 110-1 Linear Algebra Spring 2000 1. Novik

Midterm II

- 1. (30 pts) Supply short proofs for the following statements. Each part is worth $\bf 6$ pts
 - (a) If V is a finite-dimensional vector space, then its dual space V^* has the same dimension as V.
 - (b) If A is an $n \times n$ matrix satisfying $A^5 = 0$, then det(A) = 0.
 - (c) If matrix B is similar to matrix C, then B^2 is similar to C^2 .
 - (d) If $T:V\to V$ is a linear transformation on a finite-dimensional vector space V and λ is an eigenvalue of T, then $\lambda^3-3\lambda^2+7$ is an eigenvalue of T^3-3T^2+7I .

(e) Let $T:V\to V$ be a linear operator on an inner product space V. Show that if < T(u), v>=0 for every $u,v\in V$ then T=0.

2. (15 pts) What are the algebraic multiplicities of the eigenvalues of the differentiation transformation D (D(P) = P') on the space $P_3(\mathbf{R})$ of polynomials of degree ≤ 3 ? What are the dimensions of eigenspaces? Is D diagonalizable?

3. (15 pts) Let V be a vector space over \mathbf{R} , and let $T:V\longrightarrow \mathbf{R}^n$ be a one-to-one linear transformation. Show that for $u,v\in V$ the formula

$$< u, v >_{V} := < T(u), T(v) >$$

defines an inner product on V. (Here <-,-> is the standard inner product on \mathbb{R}^n).

4. (20 pts)

- (a) Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. (Hint: Find an eigenvector)
- (b) Consider an $n \times n$ matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A.

5. (20 pts) Let $T \in L(V, V)$, and let $\beta = \{v_1, \ldots, v_n\}$ be a basis of V consisting of eigenvectors of T, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively. Prove that f(T) is a zero map, where

$$f(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n).$$

Hint: what is $(f(T))(v_i)$? (also see Problem 1d)