Math 110 - Final Exam Spring 2000 - Nate Brown

- 1) (10pts) Assume dim(V)=6, $U\subset V$ is a subspace and dim(U)=4. Prove that there exist one dimensional subspaces $U_1,\ U_2\subset V$ such that $V=U\oplus U_1\oplus U_2$.
- 2) (10pts) Assume $T \in \mathcal{L}(V)$ is invertible and $\{v_1, \ldots, v_k\} \subset V$ is a linearly independent set of vectors. Prove that $\{T(v_1), \ldots, T(v_k)\}$ is also linearly independent.
- 3) (10pts) Let $\langle \cdot, \cdot \rangle$ be the dot product on \mathbb{C}^2 (i.e. $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1\overline{x_2} + y_1\overline{y_2}$) and $T \in \mathcal{L}(\mathbb{C}^2)$ be defined by T(x,y) = (ix + 2y, x + iy). Write down a formula for the adjoint of T with respect to $\langle \cdot, \cdot \rangle$. (It does **not** suffice to just write down some matrix!)
- 4) (10pts) Assume $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{C}))$ has minimal polynomial $(z-1)(z+4)^2$. Find the matrix of T in Jordan form.
 - 5) Let U, V be vector spaces with dim(U) > dim(V).
 - a) (10pts) Prove that if $T \in \mathcal{L}(U, V)$ then T is not injective.
 - b) (10pts) Construct some $T \in \mathcal{L}(U, V)$ which is surjective.

6) Define
$$T \in \mathcal{L}(M_2(\mathbb{C}))$$
 by $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ia + 3c & -b + d \\ ic & 2d \end{pmatrix}$.

- a) (10pts) Find all the eigenvalues of T. (Hint: Consider the matrix of T with respect to the canonical basis.)
 - b) (10pts) Compute the characteristic polynomial of T.
- c) (10pts) What is the dimension of the generalized eigenspace corresponding to the eigenvalue i?
 - d) (10pts) Find det(T).
- 7)a) (10pts) Construct an operator $T \in \mathcal{L}(M_2(\mathbb{C}))$ whose minimal polynomial is $z(z-3)^2$ and generalized eigenspace corresponding to 0 is one dimensional. (Give both a formula for the operator and it's matrix in Jordan form.)
- b) (10pts) Construct an operator $S \in \mathcal{L}(M_2(\mathbb{C}))$ whose minimal polynomial is $z(z-3)^2$ and generalized eigenspace corresponding to 0 is two dimensional. (Give both a formula for the operator and it's matrix in Jordan form.)

- 8) For each $\lambda \in \mathbb{F}$ define $T_{\lambda} \in \mathcal{L}(\mathcal{P}_m(\mathbb{F}), \mathbb{F})$ by $T_{\lambda}(p) = p(\lambda)$.
- a) (5pts) Prove that $ker(T_{\lambda}) = ker(T_{\tilde{\lambda}})$ if and only if $\lambda = \tilde{\lambda}$. (Hint: consider the polynomials $p_{\gamma}(z) = z \gamma$.)
 - b) (10pts) Prove that $dim(ker(T_{\lambda})) = m$.
- c) (15pts) Let $U \subset \mathcal{P}_m(\mathbb{F})$ be the one dimensional subspace spanned by the polynomial p(z) = z. Prove that for every nonzero $\lambda \in \mathbb{F}$ there exists a subspace $U_{\lambda} \subset \mathcal{P}_m(\mathbb{F})$ such that i) $U_{\lambda} = U_{\bar{\lambda}}$ if and only if $\lambda = \tilde{\lambda}$ and ii) $\mathcal{P}_m(\mathbb{F}) = U \oplus U_{\lambda}$ for each (nonzero) λ .
- 9) Let $B_1 = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ be the canonical basis of \mathbb{C}^4 , $B_2 = \{(1,0,0,0), (1,1,0,0), (0,0,1,0), (0,0,1,1)\}$ and $T \in \mathcal{L}(\mathbb{C}^4)$ be defined by T(a,b,c,d) = ((1-i)a + (2i+1)b, -ia + (i+2)b, 2c,c).
 - a) (5pts) Compute $M(T, B_1, B_1)$.
- b) (10pts) Compute the two change of basis matrices $M(I, B_1, B_2)$ and $M(I, B_2, B_1)$.
 - c) (5pts) Use part b) to show that $M(T, B_2, B_2) = \begin{pmatrix} 1 & i & 0 & 0 \\ -i & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$.
- d) (10pts) Prove that T is **not** normal with respect the canonical dot product on \mathbb{C}^4 .
- e) (10pts) Prove that there exists a basis of \mathbb{C}^4 consisting of eigenvectors of T.
- f) (10pts) Construct an inner product on \mathbb{C}^4 such that T is normal with respect to that inner product.