FINAL

Mathematical Tools for the Physical Sciences 121A

Fall 2002: Egilsson

Friday, Dec. 13, 2002 from 12:30 to 3:30PM in Room 3 Evans Hall

Name:	

REMEMBER TO SUPPLY ALL NECESSARY ARGUMENTS

1 (3%) Find the first few nonzero terms of the Maclaurent series of the function,

$$f(x) = \int_0^x \frac{dt}{1 - t^4}.$$

2 (3%) Write the complex number $\frac{2\imath}{\imath-1}$ in polar form $re^{\imath\theta}$. Note $\imath=\sqrt{-1}$.

3 (3%) Find the radius of convergence for the series,

$$\sum_{n=1}^{+\infty} n^3 (2iz)^n.$$

4 (3%) Write $\cos(\ln(\imath+1))$ in rectangular form $x+\imath y$, and show all your calculations as always.

5 (3%) If $y\cos(xy) = \sin(\pi x)$ find $\frac{dy}{dx}$ at y = 0, x = 0.

6 (4%) Find one solution f(x,y) to the differential equation,

$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = e^{x+y}.$$

Hint: Let $x=u+v,\ y=u-v$ and rewrite the equation in the variables u and v.

7 (3%) Evaluate the path integral,

$$\int_{\gamma} \mathrm{Re}(z) dz$$

where γ is the unit circle centered at the origin and oriented counterclockwise.

8 (4%) Evaluate the path integral,

$$\int_{1-i\infty}^{1+i\infty} \frac{i}{z(z^2-4)} dz.$$

9 (3%) Find the residue at $z=\pi$ of the function,

$$f(z) = \frac{ze^z}{(z-\pi)^7}.$$

10 (4%) Calculate, directly, the Laplace integral transform of the function $f(t) = \int_0^t g(\tau) d\tau$ given that the Laplace transform of g is $L(g)(p) = \frac{1}{p} \tanh(p)$.

11 (3%) Find the Laplace transform of g(t) if the function satisfies the equations: g''(t) - 8g'(t) + 16g(t) = 1 and g(0) = 1, g'(0) = 2.

12 (4%) Calculate the Fourier integral transform of the function $f(x) = e^{-|x|} \cos(x)$.