George M. Bergman

Fall 1999, Math 1B

2 November, 1999

961 Evans Hall

Second Midterm - makeup exam

8:10-9:30 AM

- 1. (36 points, 6 points apiece) Find the following. If an expression is undefined, say so.
- (a) $\sum_{n=2}^{\infty} 5^n / n^5$.
- (b) $\sum_{n=1}^{\infty} (2^{-n} + 2^{-n/2}).$
- (c) The set of all real numbers p such that $\sum_{n=2}^{\infty} n^{-p} (\ln n)^{-2}$ converges.
- (d) The Maclaurin series for $\sin \pi x$.
- (e) The Taylor series for $1/x^3$ centered at x = -1.
- (f) The solution to the differential equation $xy' = y^2 + 1$ satisfying the initial condition y(1) = 1.
- 2. (16 points) Let a and b be real numbers. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^a + n^b}$ converges if and only if at least one of a and b is >1.
- 3. (30 points, 6 points apiece) For each of the items listed below, give either an example of the situation described, or a brief reason why no such example exists. (If you give an example, you are not asked to show that it has the asserted property.)
- (a) A power series $\sum_{n=0}^{\infty} a_n (x-1)^n$ which converges only at x=2.
- (b) A power series $\sum_{n=1}^{\infty} a_n x^n$ which converges for all $x \in [-1, 1]$ and no other x.
- (c) A power series $\sum_{n=0}^{\infty} a_n (x+2)^n$ which converges for all real numbers x.
- (d) A series $\sum_{n=1}^{\infty} a_n$ which converges, but such that $\sum_{n=1}^{\infty} |a_n|$ diverges.
- (e) A series $\sum_{n=1}^{\infty} a_n$ which diverges, but such that $\sum_{n=1}^{\infty} |a_n|$ converges.
- **4.** (18 points) (a) (7 points) Find the first three terms (i.e., the constant, linear, and square terms) of the Taylor series for e^{-x} centered at x=2.
- (b) (11 points) Prove using the formula for the remainder ("Taylor's Formula") that for all x in the interval [1.5, 2.5], the sum of the above three terms approximates e^{-x} to within $e^{-3/2}/48$.