Final Exam—100 points

1 (4 points each). In each part, determine whether or not the given series or integral converges, and find its value if it does:

a. $.9 - .99 + .999 - .9999 + .99999 - .999999 + \cdots$

b.
$$\int_{e^2}^{+\infty} \frac{dx}{x(\ln x)^{1.5}}$$

c. $\frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \cdots$

2a (4 points). Find the area of the parallelogram spanned by the vectors $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $2\mathbf{i}+3\mathbf{j}-\mathbf{k}$. [We drew a picture of this on the board during the exam, because some students didn't understand what "spanned meant."

2b (5 points). Find the area of the plane region bounded by the three polar curves $r = \sec \theta$, $\theta = 0$, and $\theta = \pi/4$. Sketch this region.

3 (4 points each). In each part, determine whether or not the given limit exists or the given series converges. Find its value if it does:

a. $\sum_{n=1}^{\infty} \left[\sin\left(\frac{n+1}{n}\right) - \sin\left(\frac{n+2}{n+1}\right) \right].$

b.
$$\lim_{t \to 0+} t^{1/\ln t}$$
.

c.
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} 3^n$$
, where $f(x) = \frac{x}{1-x}$.

4 (5 points each).

a. Find $\lim_{x \to \pi/2} \frac{2x - \pi}{\tan^{-1} x}$. [In the exam as distributed, the numerator and denominator of the fraction were interchanged; we corrected the problem to the given one by writing the desired fraction on the board.]

b. Use the chain rule for partial derivatives to calculate $\frac{d}{dt}(x^y)$ when x = t, $y = \frac{1}{\ln t}$.

5a (4 points). Express in terms of definite integrals the y-coordinate (" \bar{y} ") of the centroid of the cycloid

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases} \quad 0 \le t \le 2\pi.$$

[There was an accompanying Mathematica-generated illustration of the cycloid. During the exam, we explained that we were interested in the cycloid itself as a curve, not in any two-dimensional figure.]

5b (7 points). Calculate
$$\int \frac{4x^2 + 9x + 3}{x^3 + 2x^2 + x} dx$$
.

6a (4 points). A function F(x,y) satisfies $\frac{\partial F}{\partial x}(3,4) = 2$, $\frac{\partial F}{\partial y}(3,4) = -1$ What is the largest possible directional derivative $\frac{dF}{ds}$ computed at the point (3,4)?

6b (5 points). A function G(x,y) satisfies $\frac{\partial^2 G}{\partial x^2}(1,0) = 2$, $\frac{\partial^2 G}{\partial y^2}(1,0) = -1$. Which statements are compatible with these data (check \checkmark all that apply):

6c (4 points). Given that grad $H(2,0) = 3\mathbf{i} + \mathbf{j}$, calculate $\lim_{T \to 0} \frac{H(2 + \frac{T}{\sqrt{2}}, \frac{T}{\sqrt{2}}) - H(2,0)}{T}$.

7a (6 points). Find a number a such that the two lines $\frac{x-1}{3} = \frac{y-a}{2} = \frac{z-4}{-1}$ and $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z-2}{-1}$ intersect. At what point do they intersect?

7b (4 points). Do all the different lines (for varying a) $\frac{x-1}{3} = \frac{y-a}{2} = \frac{z-4}{-1}$ lie in a single plane? If so, find an equation for the plane.

8a (7 points). For what values of x does the series $\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} 3^{3n} x^n$ diverge? For what values of x does it converge conditionally? For what values does it converge absolutely? 8b (5 points). At what point on the graph of $y = e^x$ is the graph most curved? $[k = \frac{y''}{(1+y'^2)^{3/2}}]$

9a (5 points). Obtain the Taylor series of $1 - 6\sin^2 x$ about x = 0. [Hint: $\cos 2x = \cos^2 x - \sin^2 x$.]

9b (6 points). Find the point on the plane 3x + 4y - 5z = 200 that is closest to the origin.