Nam	l	and of the state o
TA		

Math 1B — Second Midterm V.Jones, Spring 1998

150 points total. The first 5 questions are Multiple Choice.
For each question mark an × in the most correct place in the grid below. No partial credit for 1–5.
Questions 6, 7 and 8 are not multiple choice.

	a	Ъ	c	đ	e
1					
2					
3					
4					
5					

MC	
6	
7	
8	

Math 1B Midterm

Multiple Choice Questions. Each multiple choice question worth 15 points.

- 1. Consider the series $\sum_{n=1}^{\infty} \frac{\cos\left(\frac{n\pi}{3}\right)}{n}$. Which of the following is correct?
 - a) The series converges absolutely.
 - b) The series converges but not absolutely.
 - c) The series does not converge because the $n^{\rm th}$ term does not tend to zero.
 - d) The series does not converge, by the ratio test.
 - e) The series does not converge, by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.

- 2. Suppose numbers a_n , for $n \ge 0$, are given such that $\sum_{n=0}^{\infty} 2^n a_n$ converges. Which of the following is a consequence?
 - a) $\lim_{n\to\infty} a_n = 0$
 - b) $\lim_{n\to\infty}a_n=1$
 - c) $\sum_{n=0}^{\infty} \frac{a_n}{2^n}$ converges
 - d) $\sum_{n=0}^{\infty} a_n$ diverges
 - e) $\lim_{k\to\infty} \left(\sum_{n=0}^k 2^n a_n\right) = 0$
- 3. The MacLaurin series for $\sin^2 x$ is
 - a) $x^2 \frac{x^6}{3!} + \frac{x^{10}}{5!} \frac{x^{14}}{7!} + \dots$
 - b) $1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \dots$
 - c) $x + \frac{x^5}{5!} + \frac{x^9}{9!} + \frac{x^{13}}{13!} + \dots$
 - d) $1-x+\frac{x^3}{3!}-\frac{x^5}{5!}+\dots$
 - e) $\frac{1}{2} \left\{ \frac{4x^2}{2!} \frac{16x^4}{4!} + \frac{64x^6}{6!} \frac{256x^8}{8!} + \dots \right\}$

- 4. Which of the following is an example of a sequence with $\lim_{n\to\infty} a_n = -\infty$?
 - a) $a_n = (-1)^n n$
 - b) $a_n = (-1)^{n^2} n^2$
 - c) $a_n = \frac{1}{n}(e^n e^{n^2})$
 - d) $a_n = \frac{n \ln(n+5)}{(n+1)(n+5)}$
 - e) $a_n = \cos n$.
- 5. Let $J_0(x)$ be the Bessel function $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$. Which of the following is correct?
 - a) $x^2 \frac{d^2 J_0}{dx^2} + x \frac{dJ_0}{dx} + x^2 J_0 = 0$
 - b) $J_0(x) = e^x \cos(\ln x)$.
 - c) $\lim_{x\to 0} J_0(x) = 2$
 - $d) \int_0^t J_0(x)dx = J_0(t)$
 - e) $\frac{dJ_0}{dx} = J_0$

Longer Questions

6. (15 pts) (a) Find the MacLaurin series for $\frac{x^2}{(1-x)^2}$.

(15 pts) (b) Find the sum of the series $\sum_{n=2}^{\infty} n \left(\frac{1}{2}\right)^n$.

7. (15 pts) Consider the series $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$ What is the last term of the series that would have to be included to obtain $\pi/4$ to within 0.01. Justify your answer.

8. For each of the following series, say whether it converges absolutely, conditionally, or diverges. Give reasons.

(15 pts) (i)
$$\sum_{n=0}^{\infty} (-1)^n \frac{n}{n+50}$$

(15 pts) (ii)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$$