MATH 1B SECOND MIDTERM

October 25, 2002 2050 VLSB H. Wu

Your :	Name:		 	
Your	GSI's N	lame:		

Instructions

- (1). Check that you have all 6 pages of this exam booklet.
- (2). Be sure to show all your steps.
- (3). You may not use any fact that has not been covered in the course to do the exam.

EXAM SCORES							
	Max	Your score		Max	Your score		
I	30		VI	20			
II	10		V	20			
III	20						
		TOTAL		%			

Your Name: _____

I. (30%) Determine whether the given series is convergent or divergent. You may assume as known the fact that $\sum_{n} (1/n^{p})$ converges if p > 1 and diverges if $p \le 1$, and that $\sum_{n} r^{n}$ converges if |r| < 1 and diverges if $|r| \ge 1$.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{2 - \sin n}{4} \right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{(n+5)^3}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$

II. (10%) Find the sum of the series:
$$\sum_{n=1}^{\infty} \left(\frac{7}{10^{2n-1}} + \frac{1}{10^n} \right) = \frac{7}{10} + \frac{1}{10^2} + \frac{7}{10^3} + \frac{1}{10^4} + \frac{7}{10^5} + \frac{1}{10^6} + \cdots$$

Your Name:	
------------	--

III. (20%) Determine the radius of convergence and the interval of convergence of the following power series: $\sum_{n=3}^{\infty} \frac{x^n}{\ln n}$ Give reasons.

Your Name:

IV. (20%) Given a sequence $\{a_n\}$ so that $a_1 = 1$ and, for any integer $n \ge 1$, $a_{n+1} = \frac{1}{5}(a_n + 7)$.

(a) Show that $a_n < a_{n+1} < 2$ for all n, and (b) explain why $\{a_n\}$ is convergent and find $\lim_{n \to \infty} a_n$.

V. (20%) Give a direct explanation, without making use of the Integral Test, of why $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ is divergent. (Note that the sum starts with n=2.) You may of course use the reasoning that proves the Integral Test.