George M. Bergman

Fall 1999, Math 1B

26 October, 1999

961 Evans Hall

Second Midterm

8:10-9:30 AM

- 1. (36 points, 6 points apiece) Find the following. If an expression is undefined, say so.
- (a) $\sum_{n=2}^{\infty} 5^{-n}$.
- (b) $\sum_{n=1}^{\infty} (2^n + 2^{-n}).$
- (c) The set of all real numbers p such that $\sum_{n=2}^{\infty} n^{-1} (\ln n)^p$ converges.
- (d) The Maclaurin series for 2x.
- (e) The Taylor series for $1/x^2$ centered at x = 1.
- (f) The solution to the differential equation xy' = (x+1)y satisfying the initial condition y(1) = 1.
- 2. (16 points) Let a and b be real numbers. Prove that $\sum_{n=1}^{\infty} \left(\frac{a}{n} + \frac{b}{n+1} \right)$ converges if and only if a+b=0.
- **3.** (30 points, 6 points apiece) For each of the items listed below, give either an example, or a brief reason why no example exists. (If you give an example, you are not asked to show that it has the asserted property.)
- (a) A power series $\sum_{n=0}^{\infty} a_n (x-1)^n$ with radius of convergence 3.
- (b) A power series $\sum_{n=0}^{\infty} a_n x^n$ which converges for all $x \ge -1$ and no other x.
- (c) A power series $\sum_{n=0}^{\infty} a_n (x-2)^n$ which converges for all real numbers x.
- (d) A series $\sum_{n=1}^{\infty} a_n$ which is convergent but not absolutely convergent.
- (e) Two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ such that $a_n \ge b_n$ for all n, and $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} b_n$ diverges.
- 4. (18 points) (a) (7 points) Find the first three terms (i.e., the constant, linear, and square terms) of the Taylor series for $\ln x$ centered at x=2.
- (b) (11 points) Prove using the formula for the remainder ("Taylor's Formula") that for all x in the interval [1.5, 2.5], the sum of the above three terms approximates $\ln x$ to within 1/81.