Math 1B Spring, 1994 Professor K. Ribet

First Midterm Exam—February 22, 1994

1a (6 points). Calculate
$$\int \frac{2u \, du}{u^2 - 2u + 5}.$$

1b (3 points). Write a definite integral which represents the length of the curve $y = \tan x$, $0 \le x \le \pi/4$.

2 (7 points). Find the area of the surface obtained by rotating the curve $y = \sin x$, $0 \le x \le 2\pi$ about the line y = 0.

Decide whether each of the following sequences converge or diverge. In the case of a convergent sequence, find the limit. Explain your reasoning!

3a (4 points).
$$a_n = \frac{3^n}{\pi^n}$$
;

3b (4 points).
$$b_n = \begin{cases} n \sin(1/n) & \text{if } n \text{ is odd} \\ (1+n)^{1/n} & \text{if } n \text{ is even;} \end{cases}$$

3c (4 points).
$$c_n = \frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2}$$
.

4a (7 points). Evaluate
$$\int_0^1 x \sin^{-1} x dx$$
.

4b (7 points). Suppose that f(0) = 3. Use Simpson's rule with n = 4 to estimate f(8):

x	0	2	4	6	8	
f'(x)	2	4	1	3	5	

5 (7 points). Write as a sum of partial fractions: $\frac{x^3 + 5x^2 + 2x + 4}{x^4 + 2x^2}$.

6a (6 points). Evaluate the improper integral $\int_{1}^{\infty} \left(\frac{2x}{x^2 + 1} - \frac{2}{x + 1} \right) dx$. (If the integral is divergent, answer "divergent" and explain your reasoning.)

6b (5 points). Find
$$\int_{\ln 2}^{\ln 3} \frac{dx}{e^x - 1}$$
.

Second midterm exam-April 7, 1994

1a (4 points). If the series $\sum_{n=1}^{\infty} (1-\sqrt{2})^n$ converges, calculate its value. If it is divergent, explain why.

1b (5 points). Use Taylor series to express $\int_0^1 \frac{\sin x}{x} dx$ as an infinite series.

2a (5 points). Find the radius of convergence and the interval of convergence of the infinite series $\sum_{n=1}^{\infty} \frac{(x-2)^{2n}}{n^3}$.

2b (4 points). For what positive values of x does the series $\sum_{n=1}^{\infty} (x + \frac{x}{n})^n$ converge?

3 (7 points). Show that $|\sin x - x + \frac{x^3}{6}| < 10^{-7}$ if $0 < x < \frac{1}{10}$. [Consider the Maclaurin polynomial of degree 4 for $\sin x$.]

4a (6 points). Find y(t), given that $ty' + y = -\sin t$ and that $y(\pi/2) = 0$.

4b (6 points). Solve the homogeneous differential equation $y' = \frac{x-y}{x}$.

Decide whether each of the following series converges or diverges. Explain your reasoning!

5a (4 points).
$$\sum_{n=1}^{\infty} (-1)^n n \sin \frac{1}{n}$$
;

5b (4 points).
$$\sum_{n=4}^{\infty} \frac{n!}{n^n}$$
;

5c (4 points).
$$\sum_{n=1}^{\infty} \frac{(\ln n)^{10!}}{n\sqrt{n}};$$

$$5d \ \textit{(4 points)}. \quad \frac{1}{2} + \frac{1}{2 \cdot 3} + \frac{1}{2 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 2 \cdot 3 \cdot 3} + \frac{1}{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3} + \frac{1}{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3} + \cdots .$$

6 (7 points). Find the Maclaurin series for $f(x) = \frac{1}{\sqrt[3]{8-x}}$. What is the radius of convergence of this series?

Final exam – May 21, 1994

1b (6 points). The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/n}}$:

- a. Converges conditionally;
- b. Converges absolutely;
- c. Diverges;

1c (7 points). Evaluate the improper integral $\int_{-1}^{+1} \sqrt{\frac{1-x}{1+x}} dx$. (If the integral is divergent, answer "divergent" and explain your reasoning.)

2a (6 points). For which values of x does the series $\sum_{n=0}^{\infty} (x^n + (3x^2)^{n+1})$ converge? Find the sum of the series for those values.

2b (7 points). Consider the differential equation $\frac{dN}{dt} = (N+1)(N-2)(N-3)(N-4)$. Suppose that N(t) is a solution to the equation with N(0) = 1.5. Then $\lim_{t \to \infty} N(t)$:

- **a.** Is necessarily -1 ____;
- b. Is necessarily 2 ____;
- **c.** Is necessarily a number other than -1 or 2 _____;
- d. Can be any real number ____;
- e. Does not exist ____.

3a (6 points). Find $\int (\cos x + \sin x)^2 \tan x \, dx$.

3b (5 points). Given f(0) = 0, use Simpson's rule with n = 4 to estimate f(8):

x	0	2	4	6	8	
f'(x)	1	2	3	5	4	-

4 (9 points). Calculate the integral $\int \frac{x^2+x+1}{(x+1)(x^2+1)} dx$. Check your work carefully!

5a (6 points). Find $\lim_{n\to\infty} \sqrt[n]{2^n+4^n}$.

5b (6 points). Find the equation of the curve which passes through (1,1) and whose slope at each point (x,y) on the curve is y^2/x^3 .

6a (7 points). Find $f^{(19)}(0)$ where $f(x) = (1+x)\cos x$.

6b (6 points). Determine whether the sum $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$ converges.

7 (8 points). A tank contains 25 kg of salt dissolved in 500 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at the rate of 25 L/hour. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the mixture after t hours?

8a (6 points). Find f(x) given: f''(x) - 2f'(x) + 2f(x) = 0, f(0) = 1, f'(0) = 1.

8b (7 points). Solve the differential equation $y'' + y = x + \cos x$.

9 (8 points). Find a series solution for y'' = 2xy' + 2y with the initial conditions y(0) = 1, y'(0) = 0.