Math 1B — First Midterm V.Jones, Spring 1998

150 points total. The first 5 questions are Multiple Choice. For each question mark an × in the most correct place in the grid below. No partial credit for 1–5.

Questions 6 and 7 are not multiple choice.

	а	Ъ	С	d	e
1					
2					
3					
4					
5					

MC	
6	
7	

Math 1B Midterm

Multiple Choice Questions. Each multiple choice question worth 15 points.

1. Which of the following formulas is correct?

a)
$$\int u(x)v(x)dx = (\int u(x)dx)v(x) + u(x)\int v(x)dx$$

b)
$$\int u(x)v(x)dx = \int u(x)dx + \int v(x)dx$$

c)
$$u(x)v(x) = \int u(x)v'(x)dx + \int u'(x)v(x)dx$$

d)
$$\int u(x)v(x)dx = \int u(x)v'(x)dx + \int u'(x)v(x)dx$$

e)
$$\int u(x)v(x)dx = (\int u(x)dx)v'(x) + (\int v(x)dx)u'(x)$$

2. If you wanted to expand

$$\frac{2x+7}{(x+1)^2(x^2+x+19)^2}$$

in partial fractions you would use the sum:

a)
$$\frac{A}{2x+7} + \frac{B}{(2x+7)^2} + \frac{C}{(2x+7)^3} + \frac{D}{(2x+7)^4} + \frac{E}{(2x+7)^5}$$

b)
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+x+19} + \frac{Ex+F}{(x^2+x+19)^2}$$

c)
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x^2+x+19} + \frac{D}{(x^2+x+19)^2}$$

d)
$$\frac{Ax+B}{(x+1)^2} + \frac{Cx+D}{(x^2+x+19)^2}$$

e)
$$2x + 7 + \frac{A}{(x+1)^2} + \frac{B}{(x^2+x+19)^2} + \frac{2x+7}{x+1} + \frac{2x+7}{(x^2+x+19)^2}$$

- 3. Which of the following functions **cannot** be integrated in terms of elementary functions?
 - a) $x^2 \ln x$
 - b) $x^2 e^{x^2}$
 - c) $e^x \sin x$
 - d) $\frac{1}{x \ln x}$
 - e) $x \sin(x^2)$

- 4. Which of the following statements is always correct for a function f(x) with $0 \le f(x) \le C$?
 - a) If $\int_{1}^{\infty} f(x)dx$ converges, so does $\int_{1}^{\infty} \sqrt{f(x)}dx$.
 - b) If $\int_{1}^{\infty} f(x)dx$ converges, so does $\int_{1}^{\infty} f(x)^{-2}dx$.
 - c) If $\int_{1}^{\infty} f(x)dx$ diverges, so does $\int_{1}^{\infty} \frac{f(x)}{\sqrt{x}}dx$.
 - d) If $\int_1^\infty f(x)dx$ converges, so does $\int_1^\infty \frac{f(x)}{1+x} dx$.
 - e) If $\int_{1}^{\infty} f(x)dx$ diverges, so does $\int_{1}^{\infty} f(x)^{p}dx$ for p > 1.
- 5. Which of the following statements is correct?
 - a) The error bound for Simpson's rule is improved by a factor of 16 by doubling the number of points at which the function is evaluated.
 - b) The trapezoid rule is exact for quadratic functions.
 - c) There is no need to use Simpson's rule for any function involving sines, cosines and polynomials since it can always be integrated in terms of sines, cosines and polynomials.
 - d) The error bound for the midpoint rule is $|E_M| \leq \frac{\max_{a \leq x \leq b} (|f^{(3)}(x)|)(b-a)^3}{24n^2}$
 - e) Simpson's rule uses the best linear approximation to f(x) on small intervals.

Not Multiple Choice

6. (25 pts) Find the arc-length function for the curve $y = \frac{x^2}{8} - \ln x$, starting at $(1, \frac{1}{8})$. (Evaluate the integral.)

7. Evaluate the following indefinite integrals:

(i) (10 pts)
$$\int \frac{1}{(x+3)(x-2)} dx$$

7.(ii)(20 pts)
$$\int (\ln x)^2 dx$$

7.(iii) (20 pts)
$$\int \frac{1}{\sqrt{1-4x^2}} dx$$