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1. {30 points, 6 points apiece) Find the following.
(@ [+ e dx

(b jsin3x cos x dx
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{(d) An integral expressing the length L of the curve y=sinx from x=a to x = 5.

Do not attempt to carry out the integration.
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2. (40 points, 10 points apiece) Compute the following integrals.
(a) [sinx dx

dx
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3. (12 points) (a) (6 points) If f is a continuous function on the reat line, what is meant

by _fomf(x) dx (assuming this exists) ?

(b) (6 points) Let f be a function such that Iom f(x)dx exists. Let us call its value L,
and let ¢ be any positive real number. Derive from the definition a formula expressing
_[: J{cx)dx interms of L and c¢. (Correct reasoning: 3 points; correct formula: 3

points.)
4. (18 points) (a) (9 points) State the Principle of Mathematical Induction.

(b) (9 points) Recall that the Fibonacci numbers are the sequence of numbers fi, f5,
f3,... defined by fy =f, =1, and f, ., =1, +f, 1 for n=2. Prove that for all

n21, f,.4 = fa1f, —f, = (1) (Suggestion: use Mathematical Induction. In proving
Spyp from S;. apply the formula saying each Fibonacci number is the sum of the two

preceding to the highest Fibonacci number occurring.)



