MATH 1B FINAL

December 19, 2002 12:30-3:30 PM

II. Wu

Your Name:	
Your GSI's Name:	

Instructions

- (1) Check that you have all 10 pages of this exam booklet.
- (2) Be sure to show all your steps.
- (3) You may not use any fact that has not been covered in the course to do the exam.

EXAM SCORES					
Problem	Max	Your Score	Problem	Max	Your Score
1	20		6	20	
2	20		7	20	
3	15		8	20	_
4	15		9	40	
5	25		10	5	
	то	TAL		/200	

1. (20 pts.) Solve: $y' + 2xy = 2x^3$, y(0) = 1.

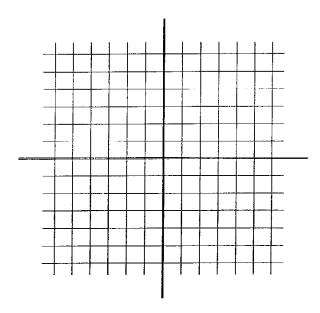
2 (20 pts.) (a) Solve: y'' - 2y' + 10y = 0, y(0) = 1, and $y(\frac{\pi}{2}) = 2$.

More space for part (a) on the next page

Your Name:

(b) Solve: y'' - 8y' + 16y = 0, y(0) = 4 and y'(0) = 0.

3 (15 pts.) Sketch the direction field for the equation $y' = x^2 + y^2$ and sketch the graph of the solution curve y(x) which satisfies y(0) = 1.



Your Name:

4 (15 pts.) Evaluate $\int_0^1 \sin(x^2) dx$ as an infinite series, and show directly that the series is convergent.

5 (25 pts.) In an idealized model, the trout population in a pond at time t, P(t), is assumed to satisfy the equation

$$\frac{dP}{dt} = P - \frac{1}{10^3}P^2$$

(a) If at the beginning (t = 0), the trout population is $P(0) = 10^2$, solve explicitly for P(t). Show all your steps. (b) What is the value of P(t) as $t \to \infty$? (c) Suppose only 10 trouts are left in the pond after a fishing season and suppose equation (*) continues to hold for the trout population. What will the trout population approximately be after a long, long time if it is left alone?

Your Name: _______ 6 (20 pts.) Solve: $y'' - 3y' + 2y = e^{2x}$, y(0) = -1 and y'(0) = 0.

7 (20 pts.) (a) Solve: y'' - xy' - 2y = 0, y(0) = 0 and y'(0) = 5. (b) Write the solution in terms of elementary functions.

Your Name:	00	
8 (20 pts.) Use the $method$ in the proof of the Integral Test to give a direct explanation of why	\sum_{i}	$\frac{1}{n \ln n}$
is divergent, but do not make use of the Integral Test itself.	n=3	

9 (40 pts.) Write T (true) or F (false) next to each of the following statements. You get +4 points for each correct answer, 0 point for having the self-control not to put down an answer, and -2 for each wrong answer.

- is larger.

 (a) If $\sum_{n=0}^{\infty} a_n$ is convergent, then the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ is at least 1.
- (b) It is known that the equation $4x'' + 16x = 5\sin 2t$ describes the motion of a spring which has a mass of 4 kg attached to it, whose spring constant is 16, and which is subject to an external force of magnitude $5\sin 2t$. Then the motion of the spring is *periodic* for all t.
 - (c) Suppose $\sum_{n=0}^{\infty} a_n$ is convergent and $a_n > 0$ for all n, then $\sum_{n=0}^{\infty} \frac{1}{\sqrt{a_n}}$ is divergent.
- (d) Suppose all the numbers a_1, a_2, a_3, \ldots are negative and suppose $(a_1 + a_2 + a_3 + \cdots + a_n) \ge -11$ for all $n = 0, 1, 2, \ldots$ Then $\sum_{n=0}^{\infty} a_n$ is convergent.
- (e) A particular solution of $y'' 2y' + 5y = 2e^x \cos 2x$ is of the form $Ae^x \cos 2x + Be^x \sin 2x$ for some constants A and B.
 - (f) $\int \sec x \, dx = \ln|\sec x + \tan x| + c$, where c is a constant.
- (g) It is known that the arc length of the parabola $y=x^2$ from (0,0) to (1,1) is $\frac{\sqrt{5}}{2}+\frac{\ln(\sqrt{5}+2)}{4}$. The arc length of the parabola $y=4x^2$ from (0,0) to (1,4) is then $2\sqrt{5}+\ln(\sqrt{5}+2)$.
- (h) We can use the root test to give a proof of the convergence of the geometric series $\sum_{0}^{\infty} r^n$ for any r satisfying |r| < 1.
- (i) The solution y(x) of the equation $y'' + y^2 = -5$ so that y(0) = 1 and y'(0) = 0 must satisfy $y(x) \le 1$ for all x.
 - (j) If $0 \le f(x) \le \frac{1}{x\sqrt{2}}$ for $1 \le x < \infty$, then $\int_1^\infty f(x) dx$ is convergent.
- 10 (5 pts.) Who is Bill Walsh? (5 points for an answer, and -5 for no answer).