Name	Math 1A — Final Exam
TA & section	V.Jones, Fall 1999

450 points total. The first 10 questions are Multiple Choice, worth 10 points each. For each question mark an \times in the <u>most correct</u> place in the grid below. No partial credit for 1–10.

Questions 16 through 21 are not multiple choice.

	a	ъ	c	đ	е
I					
2					
3					
4					
5					
6					
7					
8					
9		!			
10					
11 ·			·		
12					
13					
14		:			
15					-

- 1. Which of the following is most correct concerning the function y = f(x), which is differentiable at a.
 - a) $f'(a) = \lim_{\delta \to 1} \frac{f(a+\delta) f(a)}{\delta}$
 - b) $f'(a) = \lim_{\delta \to 0} \frac{f(a + \frac{1}{\delta}) f(a)}{\delta}$
 - c) $f'(a) = \lim_{\delta \to 0} \frac{f(a+\delta) f(a)}{\left(\frac{1}{\delta}\right)}$
 - d) $f'(a) = \lim_{\delta \to a} \frac{f(a+\delta) f(a)}{\delta}$
 - e) f'(a) is the limiting slope of the straight line obtained by zooming in more and more on the graph of y = f(x) at x = a.
- 2. Which of the following functions (for $x \neq 0$) could have the following curve as its graph?

b)
$$y = e^{-\frac{1}{x}}$$

c)
$$y = xe^x$$

$$d) \quad y = xe^{-x}$$

e)
$$y = -xe^{-x}$$

3. Newton's method used to solve the equation $\frac{1}{x} - a = 0$ yields the following sequence of approximations

a)
$$x_{n+1} = 3x_n - ax_n^2$$

b)
$$x_{n+1} = 2x_n - ax_n^2$$

c)
$$x_{n+1} = \frac{1}{x_n} - a$$

d)
$$x_{n+1} = x_n - \frac{1}{a}$$

e)
$$x_{n+1} = ax_n$$

4. If the graph of f' is

a) Y_{\blacktriangle} which of the following could be the graph of f?

5. Which of the following best represents the graph of the function $f(x) = \frac{x^3 + 1}{x^2 + 1}$?

b)

c)

d)

e`

- 6. Let f and g be two functions differentiable for all x and suppose that f(a) = g(a) and $f''(x) > g''(x) + \frac{1}{2}$ for all x > a. Which of the following can we conclude?
 - a) f(x) > g(x) for all x > a
 - b) $f(x) \ge g(x)$ for all x > a
 - c) f(x) > g(x) for all x > c for some sufficiently large c
 - d) f'(x) > g'(x) for all x > a
 - e) $f'(x) \ge g'(x)$ for all x > a
- 7. Which of the following functions is continuous?

a)
$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

b)
$$f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

c)
$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

d)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

e)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

- 8. A ladder 10 ft long is leaning against a vertical wall. It starts to slide. When the point of contact of the ladder with the wall is 6 ft from the base of the wall that point of contact is moving down at 2 ft/sec. How fast is the point where the ladder touches the ground moving at that time?
 - a) $1\frac{1}{2}$ ft/sec
 - b) 2 ft/sec
 - c) $2\frac{1}{3}$ ft/sec
 - d) $2\frac{1}{2}$ ft/sec
 - e) $2\frac{2}{3}$ ft/sec

- 9. The maximum value of $y = x^3 6x^2 + 9x$ on the interval [-2,0] is
 - a) 0
 - b) 4
 - c) 14
 - d) 16
 - e) It doesn't attain its maximum.
- 10. Which of the following best describes a solid whose volume is given by the formula $\int_0^2 2\pi y (4-y^2) dy$?
 - a) The solid obtained by rotating the region in the first quadrant bounded by $x=4-y^2$ and the y-axis about the x axis.
 - b) The solid obtained by rotating the region in the first quadrant bounded by $x = y(4 y^2)$ and the y-axis about the x axis.
 - c) The solid obtained by rotating the region in the first quadrant bounded by $x = y(4 y^2)$ and the y-axis about the y axis.
 - d) The solid obtained by rotating the region in the first quadrant bounded by $x=4-y^2$ and the y-axis about the y axis.
 - e) The solid obtained by rotating the region in the first quadrant bounded by $x = \sqrt{2y(4-y^2)}$ and the y-axis about the x axis.
- 11. $\lim_{x\to 0^+} \frac{1}{x^3} \int_0^x \sin(t^2) dt$ is
 - a) 0
 - b) 1
 - c) $\frac{1}{3}$
 - d) 3
 - e) -3

12. A point on the curve $y^2 = x^2 + 4x + 7$ closest to the origin is

- a) (-1,2)
- b) $(1, \sqrt{12})$
- c) $(0, \sqrt{7})$
- d) $(2, \sqrt{19})$
- e) $(-2, \sqrt{3})$

13. Which of the following functions is differentiable at x = 0?

- a) $f(x) = \sqrt{1 + |x|}$
- b) f(x) = |x|
- c) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$
- d) $f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$
- e) $f(x) = \begin{cases} \sin x & x \ge 0\\ \cos x & x < 0 \end{cases}$

14. If $f(x) = x \ln x$ then $f^{(10)}(x)$ is

- a) $\frac{1}{10!} x^{10}$
- b) $10! \ln(x)$
 - c) $\frac{1}{8!}x^8$
- d) $8! \ln(x)$
 - e) $8!x^{-9}$

15. The area between the curves $y=2x-x^2$ and $y=x^2$ for $0\leq x\leq 2$ is

- a) $-\frac{2}{3}$
- b) $-\frac{4}{3}$
- c) 0
- d) 2
- e) $\frac{4}{3}$

Longer Questions

16. (50 pts) Evaluate the following definite integrals.

(i)
$$\int \frac{\sin 2x}{\sin x} \, dx$$

(ii)
$$\int \sqrt[3]{3-5x} \ dx$$

(iii)
$$\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$$

(iv)
$$\int x\sqrt{x^2+a^2}\ dx$$

(v)
$$\int \frac{\cos\left(\frac{\pi}{x}\right)}{x^2} dx$$

17. (60 pts) Evaluate the following definite integrals.

(i)
$$\int_0^3 |6 - 9x + 3x^2| dx$$

(ii)
$$\int_0^1 e^{\pi t} dt$$

(iii)
$$\int_0^1 \frac{1}{x^2 + 1} dx$$

(iv)
$$\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

(v)
$$\int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{x^2 \sin x}{1 + x^6} dx$$

18. (50 pts) Evaluate the following limits.

(i)
$$\lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=1}^{n} \frac{i}{n^8} \right)$$

(ii)
$$\lim_{n\to\infty} \frac{1}{n} \left(\sum_{i=1}^n \sqrt{1 - \frac{i^2}{n^2}} \right)$$

(iii)
$$\lim_{x \to \infty} \frac{\ln x}{x^2}$$

(iv)
$$\lim_{x\to 1^+} \frac{(x-1)}{\tan\left(\frac{\pi x}{2}\right)}$$

(v)
$$\lim_{x\to 0} \frac{\sin x}{1+\cos x}$$

19. (50 pts) Evaluate the following derivatives.

(i)
$$\frac{d}{dx} \left(\frac{x}{x^3 + 1} \right)$$

(ii)
$$\frac{d^2}{dx^2}(e^{-x^2})$$

(iii)
$$\frac{d}{dx} \int_x^{e^x} \frac{\cosh(t^2)}{1+t^4} dt$$

(iv)
$$\frac{d}{dx}(x^{-x})$$

(v)
$$\frac{d^{50}}{dx^{50}}(\sin x)$$

20. (45 pts) The base of a solid is a square with vertices at (1,0), (0,1), (-1,0) and (0,-1). Each cross-section perpendicular to the x-axis is a semicircle. Find the volume of the solid.

Write answer here:

21. (45 pts) Find the volume of the solid obtained by rotating the bounded region between the curves $y = x^2$ and $y = x^3$ about the line y = 2.

Write answer here: