(30 Points)

1. Consider a spherical wall (or shell) that extends from r =rjto r = r,. The inner
surface temperature is 500 K and the outer surface temperature is 400 K. Determine the
heat flux (units of W/m?) at r=(r; +r, )/2.

(If you refer to an eq. or fig. in the text or notes give the page number)

T(r}) = 500 K

T(ro) = 400 K

Sphere Cross-Section

First find g, then find g’’. Begin with resistive network:
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For spherical geometries (equation 3.36 on page 122):
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Heat transfer resistance equation:
AT =qR=q= %

AT =500-400=100 K , then
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Divide g by area of sphere at r = (r; + r,)/2 to get q’’:
N B ¢ 3 400k
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Alternatively, Table 3.3 (pg. 126), under heat flux and spherical wall will produce the
same result.
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2. Consider an aluminum plate that extends from x =0 to x = L = 1 m and contains a
heat source. The surroundings are at 300 K. The temperature distribution is given by
(units of K) 410 + 50x — 40x*. Determine the numerical value of the convection heat
transfer coefficient at x = 0.

(If you refer to an equation or figure in the text or notes, give the page number)

ka1 =237 @ T=300K {Table A.1, page 229}
T(x)
Given: h, Te
T(x) =410 + 50x — 40x°
T»,=300K
x=0 x=1

Use temperature distribution to find T(x = 0) = 410 K, thus heat transfer is to the left. At
the left boundary the heat rate balance is:
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At the left boundary (with q defined to the left), the heat transfer rates can be found as:
qgonv = h(Ts _Too)
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qcond = k dX |x:0

Setting these two quantities equal and evaluating for h gives:
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3. An infinitely long fin contains a heat source from its base at x =0to x =3 m. The
heat source is a constant and generates 5 W/m. The base of the fin (at x = 0) is insulated.
Determine (a) the heat loss from the fin to the surroundings (the surroundings are at 300
K) and (b) the temperature of the fin at x =4 m.
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A)
At steady state, the cumulative heat loss must equal the heat generation rate. That

is, the total heat loss, qjoss 1S:

QIoss = q;en L= 5%3”\ =15W

B)
This part requires the solution of the temperature profile in both regions. Set up a

control volume for each of the two regions.

Region I (Ty) Region II (Ty)
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Jx - Qx+dx — dqconv + dqgen =0 Jx - Qx+dx — dqconv =0
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d’T, hP

d’T, hP q.
(T -T )+ =90 T T )=0
dX2 kA( | oo) kA dx2 kA( I oo)
Let 0;=Ti— Ty — Foen 5 a9 = aT, Let O = Ty — T, 90, = T,
hP ~ dx  dx dx dx
., hP hP ) } ) .
Let m* = TS m= A where P is perimeter and A is area of cross section.

Set up temperature profile in both regions:
Clen
hP

(drop sinh(mx) term because symmetric at x = 0 due to insulated BC)

T, = A cosh(mx)+ T, +

T, =Bexp(-mx)+T,
(drop exp(mx) term because must be bounded as x tends toward o)

Apply temperature continuity at x = 3:
T(x=3)=T,(x=3)= B = exp(3m){A cosh(3m)+%}

Apply heat rate continuity at x = 3:

_dTy,
dx "=

Combining these equations to solve for A gives:

% s = B = —A sinh(3m)exp(3m)

B= hsmh@m)
hP
Recast the temperature solution in region II, Ty:

T, =T +%Smh(3m)exp(_ mx),  {x>=3)

Solve for T(x = 4) gives:

T(x=4)=T,+ %Sinh@m) exp(—4mx)
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