02/23/2001 FRI 12:22 FAX 6434330 MCB 136, Spring 1994: Second Mi		DFFITT LIBRARY Name	Ø 001
Show calculations and gi	ve units for	all problems	
		cells were used to measure the ne rate of renal plasma flow w	red blood ith the
Subject weight Red blood cell volume Hematocrit	70 kg 2.5 lit 0.45		
a.What is the total blood vol	ume of the :	ubject from these data?	
b.What additional data would 2.For the subject in problem #1 data were obtained as follows Glomerular filtration rate Urinary flow rate Urine concentrations:	, additional :	estimate interstitial fluid vo renal tests and body fluid co 125 ml/min 5 ml/min 45 mM/liter 24 mg/ml 12 mg/ml	
Plasma concentrations:	Na [†] Glucose PAH	140 mM/liter 4 mg/ml 0.1 mg/ml	
a.Calculate the filtered load	d of Na ⁺		
b.What is the rate of Na ⁺ exc	pretion?		

C. If aldosterone were given to the subject, what would happen to the rate of Na⁺ excretion?

d. What is the rate of glucose reabsorption?

e. If plasma glucose were to increase, what would happen to glucose reabsorption? Why?

f. What is the rate of renal plasma flow for the subject?

Name

MCB 136, Spring 1994: Second Midterm Exam

3. Indicate by letter the functional activities of the following gastrointestinal cells. (Although more than one functional activity can be ascribed to some cells you only have to indicate one for each cell. Credit will be deducted for wrong answers.)

Salivary acinar cell	A. stimulated by cholecystokinin (CCK)
Parietal cell	B. secretes proteolytic enzymes
Duodenal secretin cell	C. has Na ⁺ -coupled amino acid transporter
Chief cell	D. secretes α -amylase
Gall bladder smooth muscle cell	E. most similar to cells of proximal tubule
Pancreatic ductular cell	F. stimulated by histamine
Somatostatin cell	G. secretes a HCO3-rich juice
Jejunal enterocyte	H. stimulated by low pH

4. Blood samples were taken before and shortly after a meal. How would they compare with respect to the following? Why?

a.pH

b. concentration of di- and tri-saccharides

c.concentration of bile salts

5.Given the following inhibitors and the membrane transporters they affect:InhibitorSite of actionA.furosemideNa⁺/K⁺/2Cl⁻ cotransporterB.amilorideNa⁺/K⁺ exchange transporterC.DIDSCl⁻/HCO₃⁻ exchange transporterD.phlorizinNa⁺-glucose coupled transporterE.cytochalasinNa⁺-independent glucose transporter

Which inhibitor would be most effective in reducing (select one for each process)

NaCl absorption in the thick ascending limb of the loop of Henle

- HCO3⁻ absorption in the renal tubule
- _____ Cholera toxin-stimulated intestinal secretion
- _____ Pancreatic bicarbonate output
- _____ HCl secretion by the parietal cell
- _____ Glucose flux across the intestinal brush border (apical) membrane

Name _

3

MCB 136, Spring 1994: Second Midterm Exam

6. Compare the following parameters and relationships with the symbols >, <, =. (note: [] indicates concentration)

[Na ⁺] in the plasma	 [Na ⁺] in interstitial fluid
Interstitial [protein]	 Intracellular (protein)
Osmolarity of parotid saliva	 Osmolarity of plasma
[Cl ⁻] of gall bladder bile	 [Cl-] of hepatic bile
Osmolarity of glomerular filtrate	 Osmolarity of proximal tubular fluid
Fluid absorbed by small intestine	 Fluid absorbed by large intestine
pH of salivary juice	 pH of gastric juice
Strength of gastric peristalsis in presence of gastrin	 Strength of gastric peristalsis in absence of gastrin
Rate of smooth muscle contraction at high intracellular [Ca ²⁺]	 Rate of smooth muscle contraction at low intracellular [Ca ²⁺]
[Na ⁺] of pancreatic acinar juice	 [Na ⁺] of pancreatic tubular fluid

7. The Na-coupled glucose transporter in the small intestine is functionally identical to that in the proximal renal tubule. Yet the following observations have been made: When the concentration of glucose entering the proximal tubule exceeds 300 mg/100 ml, then a finite amount of glucose will enter the distal tubule; however, when the concentration of glucose entering the small intestine is in excess of 300 mg/100 ml (or even greatly in excess), virtually no glucose will enter the large intestine. Provide a reasoning or speculation to account for the observed differences.

8. An individual is diagnosed to have the genetic defect of abetalipoproteinemia (i.e., a <u>deficiency</u> of intestinal β -lipoprotein synthesis). Describe two symptoms of nutritional deficiency that this patient is likely to have presented, and briefly describe the reason for the problems.

Multiple choice; 2 points each. Circle the one best choice for each question. (You may

2 004

4

MCB 136, Spring 1994: Second Midterm Exam

Name

fill in blanks to help yourself decide, but only the a - f selection will be graded.) 9. In contrast to skeletal muscle, gastrointestinal smooth muscle is characterized by action potentials of _____ (L, long; S, short) duration, the _____ (A, absence; P, presence) of well defined end plates, and the _____ (A, absence; P, presence) of troponin C. c. L,P,A a. L,A,P e. S,A,A b. L,A,A d. S,A,P f. S,P,A 10. The rate of gastric emptying into the duodenum is accelerated to a greater extent by (G, gastrin; CCK, cholecystokinin) and is greatly slowed by _____ (H, high acidity; V, vagal stimulation; C, carbohydrates). a. G, V c. G, C e. CCK, H Ь. G, H d. CCK, V f. CCK, C 11. Bilateral section of the vagi will _____ the cephalic phase of gastric secretion, and _____ the gastric phase of gastric secretion. (N, not alter; PR, partially reduce; A, abolish) a. N, PR c. PR, A e. A, N b. N, A d. PR, N f. A, PR 12. In the pancreas, cholecystokinin (CCK) has a profound stimulatory effect on cells, secretin will primarily stimulate _____ cells, and carbonic anhydrase inhibitors will depress secretion by _____ cells (A, acinar; D, ductular). a. A,D,D c. D,A,D e. A, A, D b. A,D,A d. D, A, A f. D.D.A 13. Acetylcholine raises intracellular _____ (cAMP, cyclic AMP; C, Ca) which primarily triggers _____ (E, enzyme secretion; F, fluid secretion) from the parotid gland and ____ (E, enzyme secretion; F, fluid secretion) from gastric chief cells. a. cAMP, E, E c. cAMP, F, E e. Ca, F, E b. cAMP, F, F d. Ca, F, F f. Ca, E, E 14. The enterohepatic circulation involves the recycling of _ BP, bile pigments) and includes active transport steps in the ______ (I, ileum; D, duodenum) and the ______ (U because the ______) duodenum) and the _____ (H, hepatocyte; P, pancreatic acinar ccll). a. BS, I, H c. BS,I,P e. BP,D,H b. BS, D, H d. BP,1,H f. BP, I, P 15. All of the following are secreted by duodenal mucosal cells EXCEPT a. secretin c. gastrin e. cholecystokinin b. gastric inhibitory peptide d. intrinsic factor f. enteropeptidase 16. The net filtration pressure for the formation of glomeruler filtrate equals _____ (Pgc, glomerular capillary hydrostatic pressure; Pt, capsular hydrostatic pressure; π_{gc} , glomerular capillary colloid osmotic pressure) c. $P_{gc} - P_t + \pi_{gc}$ a. Pgc + Pt - π_{gc} e. (P_{gc}/P_t) x π_{gc} b. $P_{gc} - P_t + \pi_{qc}$ d. $P_{gc} - P_t - \pi_{gc}$ f. $(P_{qc}/P_t) - \pi_{qc}$ 17. In order, from the lowest to the highest, the plasma clearances for the following substances would be _____. (N, Na⁺; G, glucose; I, inulin; U, urea; P, para-amino hippuric acid) a. P, I, N, U, G c. N,I,P,U,G e. G,U,N,P,I d. N,G,I,P,U b. P, U, I, N, Gf. G, N, U, I, P

Name ____

🖾 005

MCB 136, Spring 1994: Second Midterm Exam

Y was given intravenou found to be 200 mg/lit following most closely		the plasma concentration of Y was or excretion of Y, which of the stribution of Y:
b. blood volume	d. intracellular	-
D, decreased) by incre responding to this sti L, lamina fenestrata).	ased rate of solute delivery mulus are called (M,	rate will be (I, increased; to the distal tubule; distal cells macula densa; Z, zona glomerulosa;
a. I,M b. I,Z	с. I,L d. D,M	e. D,Z
D. 1/2	u. <i>D</i> ,M	f. D,L
the (P, proxi of glucose to approach	mal; D, distal) renal tubule	e glucose transport mechanism in s, would cause the renal clearance
a. P,125 b. P,625	d. D,125	e. D,625 f. D,20
	u. <i>D</i> ,125	1. 0,20
ascending limb (Thn),	and the thick ascending limb ve Na ⁺ transport to occur in	the descending limb (DL), the thin (Thck), we would expect the the, and the lowest
b. DL, Thek	d. Thn, Thek	e. Thck, DL f Thck Thr
	ed; D, decreased; N, not affe	by extending the length of ected) e. N,I f. N,D
	ermeability) of epithelial ce	normone involves altered(A, ells of (T, proximal tubule;
a. A,T	c. A, L	e. P,C
b. A,C	d. P.T	f. P.L
(M, cell membrane; I, i	to exert its target renal ef intracellular) receptors to a clic AMP mechanism; W, water c. I,P d. I, AMP	ctivate (P, protein
a urinary output	e will tend to lead to a due to a glomerular n. (D, decreased; I, increa	glomerular filtration rate and capillary pressure and rate ased)
a. D,D,D,D	c. D, D, I, I	e. I,D,D,I
b. D,I,I,I	d. D,D,D,I	f. I,I,D,D