
University of California, Berkeley – College of Engineering 
Department of Electrical Engineering and Computer Sciences

Fall 2010 Instructors: Dan Garcia and Brian Harvey 2010-10-27

CS10 Paper Midterm
Last Name  

First Name  

Student ID Number  

cs10- Login First Letter a b c d e f g h i j k l m

cs10- Login Last Letter a b c d e f g h i j k l m 

n o p q r s t u v w x y z

The name of your LAB TA (please circle) Jon           Luke

Name of the person to your Left  

Name of the person to your Right  

All my work is my own. I had no prior knowledge of the exam 
contents nor will I share the contents with others in CS10 who 

have not taken it yet. (please sign)

 

 
 

Instructions
● Don’t Panic!
● This booklet contains 6 pages including this cover page. Put all answers on these pages; 

don’t hand in any stray pieces of paper.
● Please turn off all pagers, cell phones and beepers. Remove all hats and headphones.
● Question 0 (1 point) involves filling in the front of this page and putting your login 

on the top of every sheet of paper.
● You have 110 minutes to complete this exam.  The midterm is closed book, no 

computers, no PDAs, no cell phones, no calculators, but you are allowed two double-
sided sets of notes.  There may be partial credit for incomplete answers; write as much 
of the solution as you can.  When we provide a blank, please fit your answer within the 
space provided.

 

Question 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Online Total

Points 1 3 2 2 3 3 3 3 2 2 3 5 10 8 10 60

Score                 



 

Short-answer Questions
Question 1 : A “sea-change” in CPU design occurred around 2004 and most agreed the “free 
lunch” was over.  In one sentence, what caused it and what did manufacturers do in response?
 
 
 
Question 2: You have a piece of code, half of which is executed serially, the other half is executed in 
parallel.  In the ideal case with an infinite number of “helpers” dividing up the parallel portion, 
what is the overall speedup of your code? ______
 
Question 3: Let us imagine Twitter mandated that every one of their users “follow” every other 
user. How does the total number of “connections” between people (connections were visualized 
as arrows, or links in the graph) scale with the number of users?
 
(a)  It remains relatively constant, regardless of the number of people.
(b)  It scales linearly with the number of people.
(c)  It scales quadratically with the number of people.
(d)  It scales exponentially with the number of people.
 
Question 4: In one sentence, how are search engines (e.g., Google) able to have a tweet 
available in their search results in less than a second after the tweet happens?  (It normally 
takes a search engine hours to “crawl” the web and update their search index.)
 
 
 
 
Question 5: Fill in the blanks with the appropriate technology that has changed the world.
 
a) ___________________ is revolutionizing the way people collaboratively author documents. 
 
b) ___________________ and ________________ are a hardware and software combination 
that put professional-quality document production in the hands of the masses.
 
c) The Internet was “invented” in 1962, but it wasn’t until 1993 when Marc Andreesen at NCSA 
introduced ___________________________ (known as its first “Killer App”) did its use explode.
 
Question 6: Give an argument why educational microworlds might be preferable to either pure 
tools or pure courseware.                                       
                                                                             
 
 
Question 7: Besides obeying local laws, name one reason why Google makes deliberate (non-
automatic) interventions in the display of search results.
 
 
Question 8: Why did the writers of the US Constitution require a limit to the duration of patents?



Login: cs10-____

Question 9: The Giants win the Pennant! The Giants win the Pennant!

Provide a single, simple expression that reports SF from the nested 
list playoffs. On the right is a screen capture of the Variables tab if 
that helps.

 

 
Question 10: Faster, Puppydog! Live! Live!
 
You wish to fill a list nums with the numbers from 1-100 (you don’t care about order). So, you 
write the following (the for block simply goes through like a repeat block with a built-in index, 
called i in this case):

 
which works perfectly, but it’s a little slow. However, your friend asks “why don’t you break the 
problem into two parts and fill the list in parallel!”  So, you duplicate that script, and adjust the 
numbers in the for loop like so:

 
In the best case, this works!  What happens (or could happen) in the worst case and why?



Question 11: Talking’ about my gggggeneration...
 
If you’ve ever spilled soda into a keyboard, you know that keys start to stick and repeat.  We 
want to write a block to remove the extra consecutive repeat character we request, leaving only 
one.  E.g., if the sentence were:
 

I love CS10....... Me too....... Me three!!!

 
...and we asked our block to remove the extra “.”s,  we would get:
 

I love CS10. Me too. Me three!!!

 
(We’ll limit this to punctuation, since the meaning could be lost if we used it on letters and 
numbers. Imagine: “The national debt is $10000000000000!!” would become  
“The national debt is $10!!”) 
 
We’ve tried to write code to do this for us, but we believe it has a bug. Briefly, answer and 
lastletter initialize to the empty character, and then the for loop (these were explained in 
question 10) sets letter to every character as we walk forward in the sentence. We only add 
that letter to the answer (which we report at the end) if the letter is not the character to 
remove and not the same as the previous character lastletter (to prevent the repeats).

 

a) Describe all sentences that don’t trigger the bug, i.e., our program returns a correct answer.
 
 
 
b) Briefly describe the small change(s) needed to fix the bug.
 



Login: cs10-____

Question 12: Two roads diverged in a wood...
 
You’re lost in the forest. Every  in the forest is either a dead-end or has exactly 2 one-way 
paths: left and right. Your goal is to find out if there is a way home.  We introduce a new data 
type called a , but you don’t know (and you don’t need to know) how it is represented; it 
could be a string, a number, or a list. You are presented with four new blocks, two predicates 
and two reporter blocks (all take a place as an argument):

●  returns  if the  is your home,  otherwise. 
●  returns  is the place is a dead-end (i.e., no paths from it). 
●  follows the left path, returning a new . 
●  follows the right path, returning a new .

It is an error to  or  if  is a dead-end (because it has no paths!
). There is no way in this forest to follow a sequence of left paths and/or right paths and end up 
where you started. I.e., there’s no way to walk in circles. Your home (if one exists) might be at a 
dead-end or it might not. You might actually start your search at home.
 
Write , which uses the four functions above and returns  if you can 
get home following a (possibly zero) number of lefts and rights starting from , and  
otherwise. Use the technique we described for authoring BYOB code on paper. We’ve provided 
an example forest for you, but your solution needs to be able to work with ANY forest. 
Below, we present a table that shows the responses of various blocks when you are at different 
places in the sample forest on the lower right.

      
1   ERROR ERROR  
2   ERROR ERROR  
3   ERROR ERROR  
4   ERROR ERROR  
5   1 2  
6   3 4  
7   5 6  

 

 
 
 



Question 13: Anyone up for a game of checkers? Hey, you, Sierpinski!
 
We’ve designed a fractal “checker” whose base (n=0) case simply stamps out a filled square 
sprite (initially 360x360 pixels), and whose recursive case places three half-sized copies of the 
previous generation in the Northwest (NW), Northeast (NE) and Southwest (SW) corners.  
The code that generated them is on the left, but you can answer the question without it.
 

a. Sketch the n=2 fractal below on the right.
b. Sketch the n=3 fractal below on the right.
c. If we forgot to write the Northwest (NW)  

recursive call (the middle call to checker),  
roughly sketch what the n=100 call would be.

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



2010Fa CS10 Online Midterm
 
Below are screenshots of the first four iterations of a beautiful fractal. Write code that 
generates the fractal, and name it FractalYourfirstnameYourlastname.ypr (e.g., 
FractalBarackObama.ypr). Also, save a screenshot of the fifth iteration (right-mouse-click 
on the stage and choose “save picture of stage...”) and name the resulting GIF similarly, i.e., 
FractalBarackObama.gif). Submit both on bspace under the “midterm” assignment.  
 
The stalks of the “tree” get half as short at every branch.

 

 

 

 

 



 

2010Fa CS10 Online Midterm
 
Below are screenshots of the first four iterations of a beautiful fractal. Write code that 
generates the fractal, and name it FractalYourfirstnameYourlastname.ypr (e.g., 
FractalBarackObama.ypr). Also, save a screenshot of the fifth iteration (right-mouse-click 
on the stage and choose “save picture of stage...”) and name the resulting GIF similarly, i.e., 
FractalBarackObama.gif). Submit both on bspace under the “midterm” assignment.  
 
Our starting square is 300 pixels on a side, centered on the screen. The length of the sides of 
the four smaller diamonds is the length of the square side divided by the square root of 8.  
Hint: We found the repeat block very helpful in both the base case and recursive case.

 

 

 

 



 

2010Fa CS10 Online Midterm
 
Below are screenshots of the first four iterations of a beautiful fractal. Write code that 
generates the fractal, and name it FractalYourfirstnameYourlastname.ypr (e.g., 
FractalBarackObama.ypr). Also, save a screenshot of the fifth iteration (right-mouse-click 
on the stage and choose “save picture of stage...”) and name the resulting GIF similarly, i.e., 
FractalBarackObama.gif). Submit both on bspace under the “midterm” assignment.  
 
The exact size and location of your initial triangle are not important, so don’t spend time 
worrying about that, just make it big enough so we can see it. The recursive calls simply aim the 
half-sized smaller version toward the middle from the corners of the original triangle.
Hint: We found the repeat block very helpful in the recursive case.

 

 

 

 



 

Writing Scratch/BYOB code on paper
You might be asked to write Scratch/BYOB code on exams, so we’ve developed a 
technique for writing it on paper.  There are a few key things to notice:

○ We write variables in UPPERCASE.
○ We change spaces between words in block names to dashes (this makes it much 

easier to read).
○ Parentheses mark the start and end of a parameter list, and we separate 

consecutive parameters by commas
○ We use indentation just as Scratch/BYOB does, to help us understand what 

is “inside” the if, else, and other Control structures.
 
Here’s a sample (and a familiar piece of BYOB code):
 

 
 
...and here’s how we would write it on an exam using our technique:
 
downup(WORD)

   if length-of(WORD) < 2

      report(WORD)

   else

      report(join-words(WORD, downup(all-but-first-letter-of(WORD)), WORD))

 

Here’s how you could write the factorial-of block from lab.
 

factorial-of(NUM)

   if NUM = 1

      report(1)

   else

      report(NUM * factorial-of(NUM - 1))




