
EE 42/100 Mid-term 1

July 22, 2010

1 Solution 1

There are several ways of solving this problem.The most obvious ways in ordered
from least work to most work is listed below:

a. Replace black-box with Thevenin-equivalent circuit;apply voltage divider
formula twice; solve the two system equation

b. Replace black-box with Thevenin-equivalent circuit;find currents for the
two cases; note that it should be the same for the circuit; apply Ohm’s law
twice; solve resulting two system equation

c. Replace black-box with Norton-equivalent circuit; eliminate the common
unknown variable. . . you get the idea.

I’m going to go ahead and list out the solution using approach a.

vm =
R

(Rth + (R1 + R))
∗ Vth (1)

2 =
1

(Rth + (1 + 1)
∗ Vth (2)

3 =
2

(Rth + (1 + 2))
∗ Vth (3)

On simplifying the above equations, you get

2Rth + 4 = Vth (4)

3Rth + 9 = 2Vth (5)

On solving these equations, you should get

Rth = 1Ω; Vth = 6V ; iNorton = isc = 6A
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2 Solution 2

This problem is very similar to the one you had on your problem set; the sole
exception being that now the ”‘rungs”’ of your ladder have three circuit elements
as opposed to only two and its in the shape of the letter ’C’. Before completing
the problem, it is imperative to note that adding one more rung to this infinite
ladder is not going to affect the effective capacitance in any way between a and
b.As a sanity check, once you make the substituion, your final circuit will look
like a square in which the rung remains the same and the last edge is replaced by
Ceq.Please be careful with regards to which part of the circuit you replace with
the effective capacitance. You can replace the infinite ladder with Ceq to get C,
C and Ceq to be in series. Let us call its effective capacitance to be Crung

1

Crung

=
1

C
+

1

C
+

1

Ceq

(6)

Crung =
CCeq

(2Ceq + C)
(7)

Now, from the reduced circuit, note that Crung is in parallel with the last C.Therefore,

Ceq = Crung + C (8)

Ceq =
CCeq

(2Ceq + C)
+ C (9)

Ceq =
CCeq + 2CCeq + C2

2Ceq + C
(10)

2C2
eq + CCeq/////// = CCeq/////// + 2CCeq + C2 (11)

2C2
eq − 2CCeq − C2 = 0 (12)

Ceq =
−(−2C)±

√
(−2C)2 − 4(2)(−C2)

2(2)
(13)

Ceq =
2C ±

√
12C2

4
(14)

Ceq =
1±

√
3

2
C (15)

Notice that the capacitance is a physical and very real value which implies that
it must be positive. Therefore,

Ceq = 1+
√

3
2

C

(Note that Farad is implied in the C)
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3 Solution 3

1. From a quick inspection of the circuit, we have five nodes and three current
loops. It looks like it would be easier to use mesh currents, since we would
only have three unknowns, versus four for node voltages. If we call the top
left mesh i1, the bottom left i2, and the bottom right i3, then our equations
are

i1R + i1R + (i1 − i2)R = 0 (16)

(i2 − i1)R + (i2 − i3)R− 5mV = 0 (17)

i3R + 3v + (i3 − i2)R = 0 (18)

Noting that R = 1Ω and v = (i2 − i3)R, we can simplify:

3i1 − i2 = 0 (19)

−i1 + 2i2 − i3 = 5m (20)

i3 + 3(i2 − i3) + i3 − i2 = 2i2 − i3 = 0 (21)

The solutions are i1 = −5mA, i2 = −15mA, and i3 = −30mA. Thus, by
KVL we can see that

va = 5mV − i1R = 10mV (22)

Similarly, vb is defined to be 3v, where

v = (i2 − i3)R = 15mV (23)

vm = va − vb = 10mV − 45mV = −35mV

2. We can quickly rule out configurations 1 and 2. The first one uses positive
feedback, which does not allow us to control our desired gain. In addition,
the first op amp’s output is shorted to the inverting input of the second op
amp, forcing it to ground to match that of the noninverting input. Thus,
our vout is not well-defined. The second configuration uses two inverting
amplifiers, which we can also rule out. Inverting our negative input twice
will not produce a positive 10V output as desired.

Both configurations 3 and 4 are acceptable, as long as a sound explanation
was given. Each employs one inverting amplifier and one voltage follower,
albeit in different orders. Configuration 3 first inverts the signal and then
follows it through to create an ideal source to driver the speakers, while
configuration 4 first follows the input through to produce an ideal input
before inverting it.

In either case, the expected ratio of resistors was −R2

R1
= 10V

−35mV
. This is

most closely accomplished using R1 = 10Ω and R2 = 3kΩ . Other ratios
which were reasonably close were accepted as well.
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4 Solution 4

1. The output voltage Vout(t) of op-amp circuit 1 reaches steady-state (where
the voltage is constant at t >> 0) because when the source is disconnected
due to an open circuit of the capacitor at steady-state, Vout(t >> 0) = 0 is
constant.

However, in op-amp configuration 2,

iL(t) ∝
∫ t=∞

t=0

vL(t) dt →∞, (24)

and since the voltage across the capacitor vC(t) depends on the current
through iL(t) as a result of iL(t) = iC(t),

vC(t) ∝
∫ t=∞

t=0

iC(t) dt ∝
∫ t=∞

t=0

iL(t) dt →∞. (25)

Since vC(t) = Vout(t) is not constant, Vout(t) does not reach steady-state.

2. Given that a sinsoidal source is supplied to a circuit that contains a com-
bination of linear elements (resistors, inductors, and capacitors), the total
response, or general solution to the linear ordinary differential equation, is
in the following form

x(t) = Ae−t/τ + B cos(ωt) + C sin(ωt), (26)

where x(t) is the voltage or current quantity in the circuit, τ is the time
constant, ω is the frequency, and A, B, C are constants.

If the sinusoidal source continues to supply energy to the circuit as t →∞,
then from Equation (26) the exponential term goes to zero. The remaining
terms can be simplified to the form,

x(t) = K cos(ωt + θ), (27)

where θ is the resulting phase shift and K is a constant term derived from
constants B and C.

By definition of a phasor, the relation of a phasor to a time-varying sinusoid
with phase φ and amplitude Xm is denoted by

x(t) = Xmcos(ωt + φ) ⇔ XmeSjφ = Xm 6 φ. (28)

Hence, when a sinusoidal source is supplied to the circuit, the steady-state
response of the circuit may be represented by a phasor.
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3. Phasors are used to describe the relationship between VS and Vout in terms
of the angular frequency ω, for ZR = R, ZC = −j( 1

ωC
), and ZL = jωL at

t = 0.

Applying KCL at node V− for V− = 0 yields,

VS −V−
ZL

=
V− −Vout

ZR

+
V− −Vout

ZC

. (29)

Simplifying the above expression in terms of ω results in

Vout = − 1

ZL

· ZRZC

ZR + ZC

·VS =
−VS

jωL(jωR2C + R)
. (30)

In phasor form, VS = −Vm 6 θ, hence, by substituting into Equation(30),
an expression is obtained in phasor form for Vout,

Vout =
−Vm 6 θ

Mout 6 α
=

−Vm 6 θ

ωRL(1 + ω2R2C2)1/2 6 α
. (31)

where Mout is the magnitude and α is the phase angle of Vout.

Then it follows that by taking the magnitude of Vout yields the following
expression,

|Vout| =
| − Vm|
|Mout|

=
Vm

ωRL(1 + ω2R2C2)1/2
. (32)

Therefore, from Equation(32), it can be shown that as ω increases, the
magnitude of Vout decreases relative to the magnitude of VS.

5 Solution 5

(a) Let us call the impedance of the quisistor as ZQ. Since it has achieved
sinusoidal steady-state, without loss of generality, we can assume
vQ = A sin(ωt+φ) where A is the amplitude,ω is the frequency and φ is the
phase.In order to calculate the complex impedance,let us first differentiate
vQ twice in order to be able to find the current through the quisistor:

d2vQ(t)

dt2
= −Aω2 sin(ωt + φ) (33)

iQ(t) = −Q
d2vQ(t)

dt2
(34)

iQ(t) = −Q{−Aω2 sin(ωt + φ)} (35)

iQ(t) = QAω2 sin(ωt + φ) (36)
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Now, that we’ve found,vQ(t) and iQ(t), we can find ZQ by taking their
ratios.

ZQ =
vQ(t)

iQ(t)
(37)

=
A sin(ωt + φ)

QAω2 sin(ωt + φ)
(38)

ZQ =
1

Qω2
(39)

Notice that the impedance is a purely real number. Therefore,

ZQ = 1
Qω2 Ω

(b) i. Apply Kirchoff’s Voltage law and then substitute for the current to
get the final differential equation:

Vs(t) = RiQ(t) + vQ(t) (40)

Vs(t) = R{−Q
d2vQ(t)

dt2
}+ vQ(t) (41)

−Vs(t)

RQ
=

d2vQ(t)

dt2
+
−vQ(t)

RQ
(42)

The final form should be as follows :

−Vs(t)
RQ

=
d2vQ(t)

dt2
+
−vQ(t)

RQ

ii. In order to find a relationship between Vs and vQ (ignoring the t vari-
able), let us apply Kirchoff’s Current Law at node a .

vQ − Vs

R
+

vQ − 0

ZQ

= 0 (43)

vQ − Vs + vQRQω2 = 0 (44)

vQ(1 + RQω2) = Vs (45)

vQ =
Vs

1 + RQω2
(46)

On substituing the values of R = 1; Q = 2; ω = 2, we get

vQ(t) = Vs(t)
9

= 2
9
cos(2t + 3)V

iii. Steady-state is not reached for vQ(t), given the initial conditions. Be-
cause we initially have VS(t) > vQ(t), positive current flows across the
resistor into the quisistor. According to the given quisistor relation,
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we can see that the second derivative of voltage is thus negative. What
does this mean for vQ(t)?

Mathematically, a negative second derivative means that the rate of
change is decreasing; graphically, it also means that the function’s
shape is concave-downward. A quick check by integrating iQ(t) twice
would also give you that conclusion. As iQ(t) is initially constant, we
have ∫

−Cdt = −Ct∫
−Ctdt = −Dt2

So vQ(t) decreases quadratically with time.

As vQ(t) decreases, the voltage drop across the resistor correspond-
ingly increases. By Ohm’s Law, more current will be drawn across
the resistor and into the quisistor. This increasing current will only
serve to decrease vQ(t) even faster, thus producing iQ(t) → ∞ and
vQ(t) → −∞ as t →∞.

iv. Recall that power = P = IV , where I is the current flowing into the
positive reference terminal of the voltage V . For a power supplier, the
power is negative (current flows out of the positive reference voltage
terminal), and for a power absorber, the power is positive (current
flows into the positive reference voltage terminal).

The current-voltage relationship for the quisistor is such that as the
voltage across the quisistor accelerates (becomes more positive), the
current is negative, and hence flows out of the positive reference voltage
terminal. If the reference voltage is already positive, and continues to
accelerate and becomes even more positive, then current flows out of
the positive reference voltage terminal, implying that the quisistor is
now a voltage supplier. However, if the reference voltage is positive,
and is decelerating (becoming more negative), the current is positive,
and hence flows into the positive reference terminal. At this point,
the voltage may still be positive (we can’t tell if the voltage is positive
or negative by how much it accelerates), in which case the quisistor
becomes a power absorber.

Hence, the quisistor can be both a power supplier and a power
absorber.
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