University of California at Berkeley
College of Engineering
Department of Electrical Engineering and Computer Sciences
Computer Science Division

CS 6ic J. Wawrzynek
sSpring 2006
Machine Structures
Midterm I
Your Name:
ID Number: . Your Seat Number:
Left Neighbor 1D: Right Neighbor ID:

This is an open-book exam. You are allowed to use any books and notes that you wish.
No calculators or electronic devices of any kind, piease. You have 2 hours. Each question
is marked with its number of points.

This exam booklet should have 10 printed pages, plus 4 blank pages at the end. Check
to make sure that you have all the pages. Put your student 1D neatly on each page.

Show your answers in the space provided for them. Write neatly and be well organized.
If you need extra space to work out your answers, you may use the back of previous
questions or the blank sheets attached to the back of your exam booklet., However, only
the answers appearing in the proper answer space will be graded.

Good luck!

problem | maximum | score
1 Bpts
2 opts
3 opts
4 10pts
5 10pts
6 10pts
7 12pts

total o0pts

CS61e 506 Midterm 1

1. [8 points]

Which of these unsigned numbers is largest:

FeedFacen., '

ID:

What is BODy., in decimal?

What is 337, it hexadecimal?

DeadBeef., oOr

What is the decimal equivalent of the 6-bit two's complement number 1010107

Put & T (true) or F (false) in each table cell:

unsigned

sign &
magnifude

1's
complement

2’s
complement

(an represent
positive numbers

Can represent
negative numbers

Has more than one
representation for 0

Uses the same addition
process as unsigned

CS61c S06 Midterm T I 3

2. [5 points] The following program is compiled and run on & MIPS computer.

—————— A A LA A e ks e m s ammm reed e e ——

1iint main{) {

2 int i;

3. int four_ints[4];

4 char* c:

6! for(i=0; i<4; i++) four_ints[i] = 2;
8 ¢ = (char*)four_ints;

9! for(i=0; i<4; i++) c[il] = 1;

10

11 printf("¥%x\n", four_ints[2]);
12 }

What does it print out? (The “%x” in printf is used to print out a word in
hexadecimal format without any leading 0.)

If we change the 2 on line 11 to a 0, then recompile and run, what would be printed?

CS61c S0 Midterm 1 ID: 4

3. [5 points] The program below is written using the MIPS instruction set. It 1s loaded
into memory at address 0xF000000C (all instruction memory addresses are shown
below).

R —— e IR - et L T M RN AR i] el ” el Y AR R — — — T LEET R

FOO0000C 1loop: addi $1, $1, -1 #

'F0000010 beq $1, $0, done #

FO000014 J io0p #

FQOOQ018 done:

For each instruction in the program, write down the values (in decimal} of each field
in the machine language version of that instruction using the following notation:

[value | value | ... |

For example, using this notation, the MIPS instruction add $3,$2,%1 would be
described as:

[012[1]3]0]32]

Put your answers to the right of the “#’s.

CSé1c 506 Midterm I ID: 5

4. [10 points]

a) The following function should allocate space for a new string, copy the string from
the passed argnment into the new string, and convert every lower-case character in
the new string into an upper-case character. Fill in the blanks and the body of the
for{) loop. You may not declare any new variable.

char* upcase(char* str) {
: char* p;
char* result;

regult = (___) malloc(

¥

return result;

b) Consider the code below. The upcase name{) function should convert the i*™
name to upper case by calling upcase_by_ref, which should in turn call upcase().

Complete the implementation of upcase by_ref. You may not change any part of
upcase name.

ivuid upcase_by_ref () A

}
void upcase_name(char* names[], int i) {
upcase_by_ref(&(names[i]});

— ™ —— EER e % " alm m aadh " SEEETETeEEsssrsmrrsrarss

Continued on nert puge . ..

/

{S6le 506 Midtermn 1

ID:

Below is table for the ASCII character codes, that you might need for part b). The
numbers along the left and top indicate the first and second hex digits of the codes,

respectively.

B T TR AN T A P IR S e ke

0 1

2

3

4

5

6

7

8

9

A

B

C

D

AR AT AT AR T S e

E F

O NUL S0H STX ETX EOT ENQ ACK BEL BS HT LF VI FF CR 80 SI
1 DLE DC1 DbC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 Sp !
3 0 1
4 @ A
5 P Q
6 ° a
7 P q

L

M T &K

o AW

$

o A= O o

e T —

¥

o O Cmoan

o Fho<t o O

= | 2 o~

T =R e i ¢ o

el B e WD

N . Ny -

A P R e

— = A

~ B = |

./
> T
N O
n O
~ DEL

CS6lc 506 Midterm I ID: T

5. [10 points] The original MIPS processor did not support multiplication; compilers
were expected to break down multipiication and division into simpler operations.
Even on newer MIPS processors (that have the MUL instruction), compilers some-
times still do this to improve performance.

Consider the following C function:

Ers . 1 L T — v - - T —

int foo(int x) {
| return x*2b7;

Write the corresponding MIPS assembly code helow. You may not use any form of
MUL. Your answer must not be more than two instructions long (not including the
jr $ra).

foo: # $a0 contains x

return value sheould be in $v0 é
ir $ra

. - . reh - —

[Ll

Multiplication is more difficult when neither argument is known at compile time.
The general procedure for achieving multiplication of two unsigned numbers 18 to
1se & series of shift and add operations (think about how long-hand multiplication
works). The following assembly code multiplies two unsigned numbers, $a0 and
$ai, leaving the result in $v0. Assume that the result is sufficiently small that it fits
in a single register.

Fill in the missing lines.

e e

addX $v0“:q_$zera, $zero # clear $vO

‘loop: beq $al, $zero, done # if $al==0, we are done
andi $t0, $al, 1 # check bottom bit of $al...
#

#

beq $t0, $zero, skip ...if it is 0, skip over
the next instructlon

e —iE3 e e # £fill me in! i
gkip: sri $al, $ai, 1 # shift $al to the right -
5 811 s ey e # £ill me in! |
|] loop # repeat
done: jr $ra

CS6le 506 Midterm [ID;]

6. [10 points] Consider the design of a new type of 16-bit processor, with the following
characteristics:

® One machine word equals 16 bits.

¢ 16 16-bit registers.

* Byte-addressed memory of 2'® memory locations.

¢ 16 different instruction opcodes (some defined below).
¢ Single word instruction format..

The table below lists a subset of instructions for this machine. Your job is to devise
the machine language (instruction encodings). Each instruction will begin with a
4-bit opcode field on the far left of the instruction word, followed by whatever other
fields are needed to encode the instruction.

To the extent possible you should model your instruction encodings after the MIPS.
Obviously, there will be differences between the two because of the smaller instruc-
tlon size and other differences between the two machines, but also many similarities.
For instance, both machines use PC-relative addressing for branches, and absolute
addressing for jumps. Also, as with the MIPS your encoding should allow the ma-
chine to branch (or jump) to the furthest instruction possible, given the constraints
in machine encoding.

For each instruction in the table, divide the instruction word into fields and for each
field specify the contents and the width in bits. Use the following notation:

[name:width | name:width | ...].
(With this notation, the MIPS r-format could be described as:
[opcode:6 | rs:5 | rt:5 | rd:5 | shamt:5 | funct:6].)

Continued on next page ...

C561¢c 806 Midterm I : 9

a) Fill in the right-most column with your instruction encoding for each instruction.

instruction opcode | meaning encoding

add ra,rb,rc 0 ra=rb-+rc

addi ra,immediate 5 ra=ra+immediate

lw ra,offset(rb) 8 ra=memory|offset+rb]

sw ra,offset(rb) 9 memoryfoffset-+rb]=ra

sll ra,rb,shamt 10 ra=rb>>shamt ,
stl ra,rb,shamt 11 ra=rb<<shamt

bez ra,label 12 if ra==0 go to label

jmp label 15 go to label

b) In the space below, describe the behavior of your branch instruction {(bez) in the
style of the following description for the MIPS beq instruction:

IF (rs==rt) PC = PC + 4 4 (SignExtend(immediate) << 2} ELSE PC = PC + 4

¢} Similarly, describe the behavior of your jmp instruction in the style of the following
description for the MIPS j instruction:

PC = { PC[31..28], immediate, 00 }, where { , , } means concatenation.

US6tl1c S06 Midierm 1 I 10

7. [12 points] Below is a recursive version of the function BitCount. This function
counts the number of bits that are set to 1 in an integer.

Your task is to translate this function into MIPS assembly code. The parameter x
is passed to your function in register $a0. Your function should place the return
value in register $v0. It is important to clearly comment your code to facilitate our
gradmg Process.

int BltCGunt{un51gned 0 {
int bit;
if (x == 0) return 0;
bit = x & 0xi; |
return bit + BitCount(x >> 1);

1

MII*S assembly code franslation:

A A e - N N R 8 R — VYRR 8 S ——

##
BitCount |

u# $a0 = x, $v0 = return value

##
BitCount:

CoS6lc 506 Midterm 1

Scrap.

I

11

(S61c 806 Midterm 1

Scrap.

I1):

12

(S561c SO6 Midterm T

Scrap.

ID:;

13

CS61c S06 Midterm I

Scrap.

ID:

14

	C1.gif
	C2.gif
	C3.gif
	C4.gif
	C5.gif
	C6.gif
	C7.gif
	C8.gif
	C9.gif
	C10.gif
	C11.gif
	C12.gif
	C13.gif
	C14.gif

