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The examination has a duration of 2 hours and 45 minutes. 
Answer all questions. 
All questions carry the same weight. 
 



1. Each of the sliding bars A and B engages its respective rim of the two riveted wheels without 
slipping. If, in addition to the information shown, bar A has an acceleration of 2 m/s2 to the 
right and there is no acceleration of bar B, calculate the magnitude of the acceleration of 
point P for the instant depicted. 

 
 
2. The crank OA revolves counterclockwise with a constant angular velocity of 5 rad/s. For the 

position shown, determine the angular velocity and angular acceleration of the slotted link 
BC. 

 
 
3. The slender 150-lb bar is supported by two identical cords AB and AC. If cord AC suddenly 

breaks, determine the initial angular acceleration of the bar and the tension in cord AB. 
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4. A sphere of mass m and radius a rests on top of a larger fixed sphere of radius b. The smaller 

sphere is slightly displaced so that it rolls without slipping down the larger sphere. Where 
will the rolling sphere leave the fixed sphere? Is there any change in the take-off position if 
two cylinders of radii a and b are used instead? The moment of inertia of a sphere of mass m 
and radius r about a diameter is 5/2 2mr . The moment of inertia of a cylinder of mass m and 



radius r about its axis is 2/2mr . 
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5. Determine the minimum velocity v which the wheel must have to just roll over the 

obstruction. The centroidal radius of gyration of the wheel is k, and it is assumed that the 
wheel does not slip. What is the value of v if the wheel is a uniform disk with mass m and 
radius r and 8/rh = ? 
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Problem 1. For A and B on the riveted wheel, 
αra BAtBA // )( =  ⇒ α)26.0(2 =  

⇒ 69.7=α rad/s2 
ωrv BABA // =   ⇒ ω)26.0()6.0(8.0 =−−  

⇒ 38.5=ω rad/s 
The center O is in rectilinear motion along the x-axis and 

23.1)16.0( == αaO m/s2 
For O and P on the wheel, 

tOPnOPOP )()( // aaaa ++=  
 jii αrωr OPOP /

2
/23.1 +−=  

 jii α)69.7(16.0)38.5(16.023.1 2 +−=  
 ji 23.141.3 +−=  

Thus 
62.323.141.3 22 =+=Pa m/s2 

   
 
Problem 2. Attach a rotating xy-frame to C with the y-axis directed along CB. The pin A can only 
slide along the slot on link CB, therefore both relv  and rela  act along the link CB. Then 

rel/rel/ vrωvrωvv +×=+×+= CACACA  
⇒ jjkji rel830cos30sin vωvv BCAA +×=°+°−  
⇒ jiji rel830cos)5(430sin)5(4 vωBC +−=°+°−  

Equating i coefficients, 

25.1
8

30sin20
=

°
=BCω rad/s 

Equating j coefficients, 
32.1730cos20rel =°=v in/sec 

Since AO rotates with a constant angular velocity of 5 rad/s about fixed point O, 
jijiaa 5060.8630sin)5(430cos)5(4)( 22

/ −−=°−°−== nOAA  
In a similar manner, 

relrel// 2)( avωrωωrωaa +×+××+×+= CACACA   
 jjωrωωrα relrel// 2)( avCACA +×+××+×=  
 jjkjkkjk rel32.17)25.1(2)825.1(25.18 aαBC +×+××+×=  
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 jjii rel5.1230.438 aαBC +−−−=  
It follows that 

jjiiji rel5.1230.4385060.86 aαBC +−−−=−−  
Equating i coefficients, 

41.5
8
30.43

==BCα rad/s2 
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Problem 3. For the bar, 

xGx amF )(=∑  ⇒ xGamTθT )(
5
4cos ==   (1) 

yGy amF )(=∑  ⇒ yGamTmgθTmg )(
5
3sin =−=−  (2) 

αIM GG =∑   ⇒ αmTθT 28
12
1

5
12)sin4( ==   (3) 

IGα 

m(aG/B)t G 
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There are three equations containing four unknowns T, xGa )( , yGa )(  and α. From kinematics, 

BGBG /aaa +=  
Since the bar is stationary when the cord AC breaks, 0=ω  and 0=Bv . Hence, 

04)( 2
/ == ωa nBG  ⇒ αaa tBGBG 4)( // ==  

0
5

)(
2

== B
nB

va  ⇒ tBB aa )(=  

Thus BG /a  is perpendicular to BG and Ba  is perpendicular to AB. Suppose Ba  makes an angle θ 
with BG. Then 

xBGxBxG aaa )()()( /+=  ⇒ BBxG aθaa
5
3cos)( ==  

yBGyByG aaa )()()( /+=  ⇒ αaαθaa BByG 4
5
44sin)( +=+=  

Eliminate Ba  from the above two equations, 



αaa xGyG 4)(
3
4)( +=       (4) 

Solve Eqs. (1) – (4) simultaneously, 

18.4
208
27

== gα rad/s2 

27.43
52
15

9
20

=== mgαmT lb 

In addition, 43.7)( =xGa ft/s2, 63.26)( =yGa  ft/s2, and 38.12=Ba  ft/s2. As a consequence, Gma  
has a direction as shown. 
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In comparison, 

27.4375.93
8
5

sin2)90cos(2
=>===

−°
= Tmg

θ
mg

θ
mgTst  

Alternative Solution 
Using the moment equation about B, 

damαIdmaαIM yGGGGB )(+=±=∑  

⇒ )4()(8
12
1)4( 2

yGamαmmg +=     (5) 

Solve Eqs. (1), (2), (4), and (5) simultaneously, 
18.4=α rad/s2 

27.43=T lb 
 
Problem 4. Let ω and α be angular velocity and acceleration of the rolling sphere. The position 
of the mass center G of the rolling sphere may be specified by the absolute coordinate θ with 
respect to the vertical. From kinematics, the contact point C is the instantaneous center of zero 
velocity and 

CGCGCG // vvvv =+=  

⇒ ωaθba =+ )(  
At any position θ before the rolling sphere leaves the fixed sphere, 

0=∆+∆ gVT  

⇒ 0)cos1)((
2
1

2
1 22 =−+−+ θbamgωImv GG  

⇒ )cos1)(()(
5
2

2
1])[(

2
1

2
22 θbamg

a
θbamaθbam −+=






 +






++


  



⇒ )cos1(
)(7

102 θ
ba

gθ −
+

=      (1) 

For the rolling sphere, 

nGn amF )(=∑  ⇒ 2)(cos θbamNθmg +=−  (2) 
Combine Eqs. (1) and (2), 

)10cos17(
7
1

−= θmgN      (3) 

When the rolling sphere leaves the fixed sphere, 0=N  and 

°== − 97.53
17
10cos 1θ  

The take-off position is independent of m, a, and b. For two cylinders, 2

2
1 maIG =  for the rolling 

cylinder and the same process yields 

°== − 15.55
7
4cos 1θ  

If the rolling sphere is treated as a particle sliding on a smooth fixed sphere, the take-off position 
is given by 

°== − 19.48
3
2cos 1θ  
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Position 1: θ = 0 
 
Position 2: θ > 0  

 
Problem 5. The motion of the wheel is divided into parts: (1) impact at C and (2) rolling over the 
obstruction afterwards. When contact occurs at C, the wheel pivots about the obstruction at C 
and the friction F between the wheel and horizontal ground vanishes. During and immediately 
after impact an unknown impulsive force R acts on the wheel over a short duration 0≈∆t . After 
impact the wheel rotates about C with a velocity 2v  perpendicular to GC. Since there is no 
slipping, 

1ωrv =  

22 ωrv =  
Just before impact, 

)()()( 2
11 hrmv

r
vmkhrmvωIH GC −+=−+=  

Just after impact, 



rmv
r
vmkrmvωIH GC 2

22
222)( +=+=  

Let s be the distance of C from the vertical line through G. Then 

C
t

C HdtM Δ
Δ

=∫∑  

⇒ 12
Δ

)()(Δ CC
t

HHtmgsmgsdt −=−=− ∫  

⇒ 21 )()( CC HH =  

⇒ 







+
−= 222 1

rk
rhvv       (1) 

After impact, the wheel rolls on curb point C against gravity. Thus 
0=∆+∆ gVT  

For minimum v, kinetic energy after impact is totally expended in rolling over the obstruction, 

mghωImv G =+ 2
2

2
2 2

1
2
1  

⇒ mgh
r
vmkmv =+ 2

2
222

2 2
1

2
1      (2) 

Combine Eqs. (1) and (2) to eliminate 2v , 

)(2 22
22 rkgh

rhrk
rv +
−+

=  

Suppose the wheel is a uniform disk with mass m and radius r and 8/rh = . Since 2/rk = , 
the minimum velocity v which the wheel must have to just roll over the obstruction is 

gr
gr

rkgh
rhrk

rv 4454.0
11
24

)(2 22
22 ==+
−+

=  

1ω  
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Just before impact at t = 0  
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Just after impact at t = Δt  
 


