CS61A Solutions to mt1, Spring 2010

1. What will Scheme print?

> (keep (lambda (wd) (= (count wd) 3)) '(for no one))

(for one)

This was a reasonably straightforward expression; it looks at each

word in the input sentence and keeps the ones with three letters.

As with many other examples in CS61A, "For No One" is the name of a

Beatles song, from the album _Revolver_.

> (define (f x) (lambda () (se 'hello x)))
> (first (f 'brian))
ERROR

This expression was designed to be a bit tricky, but also to highlight
how important it is to know what the domain and range of your

functions are, especially when they are higher-order functions!

Let's read it carefully. "Define F to be a procedure of one argument,

X, whose /result/ is [a procedure of no arguments whose result is the
sentence made by combining the word HELLO with the value of X]." In
other words, the value of (f 'brian) is going to be a procedure. And

we certainly can't apply FIRST to procedures!
A lot of people put HELLO as the answer. Remember that Scheme does

exactly what you tell it to, not what you may have actually meant!

> (define (g x y) (x (se 'hello y)))
> (g first 'satish)

hello

Similar to the previous problem, but this one actually does things

correctly. Again, let's look at the definition of G very carefully:

"Define G to be a procedure of two arguments, X and Y, whose result
is [the result of applying X to the sentence made by combining the
word HELLO with the value of Y]".

When we call G, X gets bound to the FIRST procedure and Y to the word
SATISH. We then call FIRST on the sentence (HELLO SATISH), and get the
word HELLO.

>(every (*2)'(1234))
ERROR

The point of this question was to remember that EVERY takes a
/procedure/ as its first argument, not an expression. (You can't pass
around expressions in Scheme.) Some people really want this to work,
and give the sentence (2 4 6 8) as a result. It doesn't, and doesn't

really make sense if you remember the definition of EVERY:

(define (every fn sent)
(if (empty? sent)
‘0
(se (fn (first sent)) (every fn (bf sent)))))

We call FN on the first item in the sentence. What's FN? Well, it had

better be a procedure!

A few people said (2 2 2 2) as their result, presumably because (* 2)
evaluates to 2. But the /number/ 2 is still very different than a
/procedure returning 2/, and you still get an error when you try to
apply 2 to (first sent).

>(cadr'((abc)def))
d

This was a pretty simple list question; the main test was whether or

not you remembered that CADR means "the CAR of the CDR" and not the
other way around. You also had to notice that the first element of the
input list was a sublist (a b ¢), and so the CDR of the whole list

came out to (d e f). From there the CAR is clearly D.

2. Box-and-pointer diagrams

> (cons (cons 1 2) (cons 3 '()))

((1.2)3)

+——t-—+ +——t-—+
------- > || ——>11/]
+-|-+---+ +-|-+---+
| v
v 3

+—t—t

+-|-+-|-+

The easiest way to do this problem was to be very mechanical. For the
expression, you start with the two inner CONSes and get (1. 2) and
(3. (), the latter of which is the same as (3). Then you CONS

/those/ together and get ((1 . 2) . (3)), which is ((1 . 2) 3). Many

people missed this and put ((1 . 2) (3)) instead.

The box-and-pointer diagram worked the same way -- remember, each CONS
creates exactly one new pair! So you get the bottom pair and the right
pair, then put them together with one more pair.

Scoring: 1pt for the value, 2pts for the box-and-pointer diagrams.

-1pt if you didn't have a start arrow

Given the list (a () (b ¢)), draw the box-and-pointer diagram for it, then

write an expression that creates it, using only quoted symbols, the empty
list, and the CONS procedure.

>[N =—>1|—>I]]/]

S I -
v |
a \

+—t—+ "t
1] >[1171
+-|-+---+ +-|-+---+
v v
b c

This is the sort of problem you want to do "top-down" (or
"outside-in"). The outside list has three elements, so you should
start by drawing a "spine" of three connected pairs, where the last

pair's CDR is the empty list.

The first element is the word A; that's easy.

The second element is an empty list. We allowed you to use either a
slash, a pair of parens (), or even a separate slashed box to
represent the empty list, but you had to be consistent! The empty list
is the same thing whether it's marking the end of a list (CDR) or is

an element of a list (CAR).

The last element is itself a list, this time with two elements. Again,
you should start by drawing a two-pair spine, then fill in the

element values afterwards.
A common mistake was to quote A, B, and C in your box-and-pointer
diagram. This is INCORRECT! A box-and-pointer diagram represents

/values/, not expressions, and the value of the *word* B is just B.

(cons 'a (cons ‘() (cons (cons 'b (cons 'c '())) '())))

Building the expression was mostly just an exercise in being careful;

one CONS per box in the diagram, and make sure each CONS has a CAR and
CDR specified. This time, you /had/ to quote the words A, B, and C,

because they're being used in an expression. We didn't take off any

points for not quoting the empty list, because STk is OK with that.

But it's not actually in the Scheme standard.

If you messed up on your diagram, but wrote an expression that matched

it, we gave you full credit for the expression.

Answers that used a quoted list or another list constructor besides

CONS received no credit.

Scoring: 1pt for the box-and-pointer diagram, 2pts for the expression.
-1pt for not quoting the words A, B, and C in the expression.
-1pt if you didn't have a start arrow, unless you already

lost a point for (2a)

3. Data Abstraction

Assume FOO is a /list/ of /sentences/. Write an expression that returns the
final /letter/ of the first /word/ in the first /sentence/ of the list FOO.

(last (first (car foo)))

This was a pretty straightforward data abstraction question. Even
though other answers would give you the "right" value (such as
(last (caar foo))), that wasn't the point of the question! Such

answers received no credit.

Scoring: 2pts, all or nothing.

Assume BAR is a /pair/ of /2D-points/. Write an expression to compute the

slope of the line through the points. You must use the abstraction with
constructor MAKE-POINT and selector X-COORD and Y-COORD.

{(/ (- (y-coord (cdr bar)) (y-coord (car bar)}))

(- (x-coord (cdr bar)) (x-coord (car bar))))

This one was a little trickier. There were two issues that tripped

people up here. The first was the word "pair", which some people took
to mean "two-element list". Whenever we use the word "pair" in Scheme,
we always mean "the thing returned by CONS, a single box in a
box-and-pointer diagram™. Answers that used CADR to get the second

point received no credit.

The second issue was with mentioning MAKE-POINT. We were trying to be
clear about using the familiar data abstraction that had already come

up in lab, but some students took it to mean "you must use

MAKE-POINT", which is /not/ what we intended! Most of these attempts
went awry, many to pass BAR as a lone argument to MAKE-POINT.

Solutions that created copies of the existing points and correctly
used the selectors were given full credit, since it required /more/

work to stay within the abstraction that way.

Some students decided to write their answer as a procedure with a
parameter BAR. This was fine.

A few answers used X-COORD and Y-COORD to extract the two points from
BAR (then correctly using them on each point). This doesn't make any
sense! A pair does not have x- and y- coordinates; it has a carand a

cdr. The whole point of data abstraction is to use different language

to talk about different kinds of data, /not/ that you should never use

CAR and CDR.

Scoring: 2pts for a correct expression that respected data abstraction.
1pt for a solution that respected data abstraction but got the slope
wrong (such as putting the difference of x-coordinates in the
numerator).

Opts for a solution that violated data abstraction.

4. Orders of Growth

(define (append a b); helper function for INTEGERS-TO
(if (null? a)
b
(cons (car a) (append (cdr a) b))))

(define (integers-to n)
(if (=n0)
0
(append (integers-to (- n 1)) (list n))))

INTEGERS-TO is Theta(n”2).

Let's start with APPEND. Every time it calls itself, the first
argument becomes one element shorter: (append (cdr a) b). So it
will call itself one time for each element, which means it ends

up with as many recursive calls as the first list is long. It

only does constant-time operations inside the body (besides the
recursive call), so we can say APPEND is Theta(length of first

argument).

Now, how calls to APPEND are there going to be? Well, INTEGERS-TO
subtracts 1 from its argument N with every recursive call, so there

are going to be N recursive calls -- each of which performs a call

to APPEND. At this point you can already guess that the runtime is
going to be Theta(n*n) = Theta(n*2).

If you're being careful, you'll realize that APPEND doesn't always get
called with lists of the same length! When N is 10, the first argument
to APPEND is (integers-to 9), which has 9 elements. But when N is 3,
the first argument is (integers-to 2), which has 2 elements! So, to be

very careful we have to add these up:

(N-1) + (n-2) + (n-3) + ... + 2 + 1

If you remember your math, this series comes out to (n*2)/2, which is

still Theta(nA2).

The most common incorrect answer was Theta(n), probably from people
who didn't catch that APPEND was Theta(n) itself, or who thought that
the fact that the size of the list doesn't stay the same would cancel

out the effect.

(define (mystery x)
(cond ((=x 0) 0)
(=x1)1)
(else (+ (mystery (- x 1))
(mystery (/ x x))))))

MYSTERY is Theta(n)

This one was tricky! There are two recursive calls, so you'd be
tempted to put Theta(2”n). But take a look at them. (mystery (- x 1))
is a standard recursive call; it will take X-1 recursive calls before

reaching a base case.

(mystery (/ x x)) is different. Why? Because (/ x x) is always 1, and
(mystery 1) is a base case. So that call takes constant time. You can
almost think of it as not a recursive call at all; it is, but it

doesn't contribute to the order of growth.

Scoring: 2pts each, all or nothing

5. lterative vs. Recursive Processes

(define (slow-multiply a b)
(define (slow-multiply-internal a b result)
(cond ((= a 0) result)
(else (slow-multiply-internal (- a 1) b (+ result b))}))

(slow-multiply-internal a b 0))

SLOW-MULTIPLY generates an iterative process.

This is a prototypical example of an iterative procedure.
SLOW-MULTIPLY certainly doesn't do any work; it simply calls
SLOW-MULTIPLY-INTERNAL right away and returns its answer.

SLOW-MULTIPLY-INTERNAL has a base case and a recursive case. The base
case is just returning a value, so it's not going to mess up a

recursive process. The recursive case makes a single recursive call,

and moreover, it's a /tail call/, meaning it's the /last/ thing to do

in computing SLOW-MULTIPLY-INTERNAL.

A lot of iterative procedures use helper procedures with a RESULT
parameter. This way, the base case can just return the RESULT once

everything is done, and all the recursive calls can rely on that.

(define (faster-multiply a b)
(cond ((=a 0) 0)
((odd? a) (+ (faster-multiply (quotient a 2) (* b 2)) b))
(else (faster-multiply (quotient a 2) (* b 2)))))

FASTER-MULTIPLY generates a recursive process.

In this case, we don't have any helpers; instead we just have a base

case and two recursive cases. The first recursive case calls
FASTER-MULTIPLY, then adds B to the result. Because there is more work
to do after the recursive call repeats, this is /not/ a tail call, and

thus the function does not generate an iterative process.
The second recursive case /is/ a tail call, but that doesn't matter at
this point, since the first case already needs to do work after the

recursive call finishes.

Scoring: 2pts each, all or nothing.

6. Higher-order Procedures

Write a procedure VOWEL-COUNTS that takes a sentence and returns a sentence of
the number of vowels in each word. (The CS61A TAs like to refer to this as
"evoweluation".) Your solution should use only *higher-order procedures* (no

recursion)!

(define (vowel-counts sent)

(every (lambda (x) (count (keep vowel? x))) sent))

This was the most compact solution; another common one used two calls
to EVERY (one for keeping vowels and one for counting the remaining

letters).

Most people got the basic ingredients: KEEPing only vowels in EVERY

word, and COUNTing them. Common mistakes included using KEEP where an
EVERY was needed or vice versa, or correctly KEEPing the vowels, but

then COUNTIng the words in the sentence instead of vowels in each

word.

People who forgot that they could use COUNT could still get a correct

answer with a more roundabout solution like this:

(define (vowel-counts sent)
(every (lambda (wd)
(accumulate +
0
(every (lambda (letter)
(if (vowel? letter) 1 0))
wd))

sent))

Unfortunately, it was hard to get this right because of the way that
EVERY works. Some answers tried to convert each word to a sentence of
numbers using EVERY, then use another EVERY to do the accumulation.
The trouble is, EVERY returns a /sentence/, so each word's sentence of

numbers gets flattened into one big sentence afterwards, losing any

internal structure.

A few answers had expressions like in problem (1d), where there was a
bare expression with no lambda. (every (keep vowel? wd) sent). This
doesn't make sense; where did WD come from? Remember that KEEP and
EVERY (and their list friends FILTER and MAP) take a /procedure/ as

their first argument.

Scoring:

8 Perfect

7 Trivial mistakes

4-5"The idea"

5 Reversed COUNT and EVERY (counted words instead of letters)

5 Egregious paren issues (usually with open parens, not close parens)

3 Used a bare expression instead of a lambda in a call to KEEP or EVERY
1-2 "An idea"

7. Recursion

Write a procedure CONTAINS-PHRASE? that takes two sentences, and returns #t if
the first sentence contains the second sentence in order (but not necessarily

consecutively).

(define (contains-phrase? sent phrase)
(cond ((empty? phrase) #t)
((empty? sent) #f)
((equal? (first sent) (first phrase))
(contains-phrase? (bf sent) (bf phrase)))

(else (contains-phrase? (bf sent) phrase))))

There are two base cases to think about here! First, we only know
that the sentence actually does contain the phrase when the entire
phrase has been accounted for, which is the first case. And we only
know that the phrase is /not/ in the sentence when the phrase has a
word that's not in the rest of the sentence at all. Some people used
MEMBER? to check this, but it was easier to just wait until SENT ran

Scoring:

8 Perfect

out of words.

Getting these base cases backwards actually does give incorrect
results! Consider the case where the last word in the phrase is the
last word in the main sentence -- both arguments will be empty. We

have to be sure to return #t in this case.

The recursive cases are similar; either we've found the first word in
the phrase or we haven't. Either way, we're done with the word in the
main sentence. Some people tried to be smart and actually found out
where the next word /was/, and used either a helper procedure or the
library procedure SUBSEQ to chop off all words up to that point. But

that wasn't necessary either.

The most common mistake involved the very intelligent idea to KEEP
only those words in the main sentence that were part of the phrase,
then see if there were the same number of words left over as there
were in the phrase, or some variant of this idea. The main problem
here is if the main sentence contains duplicates, in which case this

procedure falls down, usually on one or both of the following cases:

> (contains-phrase? '(let let it be) '(let it be))
#t

> (contains-phrase? (it it be) '(let it be))

#f

Remember, it's not enough to just have the examples working! We try
to pick helpful cases, but in the end you still have to solve the

problem as posed.

7 Trivial mistakes

7 Base case mistakes (invalid, missing, or reversed base cases)
5"The idea"

5 Any solution that worked correctly assuming no duplicates

4 Correct solution for checking if the first sentence /consecutively/

contained the phrase (a harder problem, but not what was asked for)
3 Correct solution for checking if the first sentence contained the
words of the phrase in any order (an easier problem)
1-2 "An idea"

