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Problem 1. [True or false] (20 points)

(a) TRUE or FALSE: Let the logical propositionR(x) be given byx2 = 4 =⇒ x≤ 1. ThenR(3) is true.

(False implies anything.)

(b) TRUE or FALSE: The propositionP =⇒ (P∧Q) is logically equivalent toP =⇒ Q.

(c) TRUE or FALSE : The propositionP =⇒ (P∧Q) is logically equivalent to(P∧Q) =⇒ P.

(Consider P= True, Q= False.)

(d) TRUE or FALSE: The proposition(P∧Q)∨ (¬P∨¬Q) is a tautology, i.e., is logically equivalent to
True.

(e) TRUE or FALSE : ∃n∈ N . (P(n)∧Q(n)) is logically equivalent to(∃n∈ N . P(n))∧ (∃n∈ N . Q(n)).

(Consider the propositions P(n) = “n is odd” and Q(n) = “n is even”.)

(f) TRUE or FALSE: ∃n∈ N . (P(n)∨Q(n)) is logically equivalent to(∃n∈ N . P(n))∨ (∃n∈ N . Q(n)).

(g) TRUE or FALSE: ∀n∈ N . ((∃k∈ N . n = 2k)∨ (∃k∈ N . n = 2k+1)).

(Every natural number is either odd or even.)

(h) TRUE or FALSE : ∃n∈ N . ((∀k∈ N . n = 2k)∨ (∀k∈ N . n = 2k+1)).

(For any n∈ N, take k= 100n+100; then n6= 2k and n6= 2k+1.)

(i) TRUE or FALSE: ∀n∈ N . ((∃k∈ N . n = k2) =⇒ (∃ℓ ∈ N . n =
ℓ

∑
i=1

(2i−1))).

(For any n∈ N with n= k2, takeℓ = k.)

(j) TRUE or FALSE : If we want to prove the statementx2 ≤ 1 =⇒ x≤ 1 using Proof by Contrapositive,
it suffices to prove the statementx2 > 1 =⇒ x > 1.

(Converse error. We’d need to prove x> 1 =⇒ x2 > 1.)

(k) TRUE or FALSE: If we want to prove the statementx2 ≤ 1 =⇒ x≤ 1 using Proof by Contradiction, it
suffices to start by assuming thatx2 ≤ 1∧x > 1 and then demonstrate that this leads to a contradiction.

(x2 ≤ 1∧x > 1 is the negation of x2 ≤ 1 =⇒ x≤ 1.)

(l) TRUE or FALSE : Let S= {x∈ Z : x2 ≡ 2 (mod 7)}. Then the well ordering principle guarantees that
Shas a smallest element.

(S is not a subset of the natural numbers, so the well ordering principleguarantees nothing. In fact, S
has no smallest element, since x= 3−7n satisfies x2 ≡ 2 (mod 7) for every n∈ N.)

(m) TRUE or FALSE : Let T = {n∈ N : n2 ≡ 2 (mod 8)}. Then the well ordering principle guarantees that
T has a smallest element.

(T is the empty set, so the well ordering principle guarantees nothing in this case.)

(n) Suppose that, on dayk of some execution of the Traditional Marriage Algorithm, Alice likes the boy
who she currently has on a string better than the boy who Betty has on a string.

TRUE or FALSE : It’s guaranteed that on every subsequent day, this will continue to be true.

(Tomorrow, Betty might receive a proposal from some third boy who Alicehas a mad crush on.)
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Problem 2. [You complete the proof] (10 points)

The algorithmA(·, ·) accepts two natural numbers as input, and is defined as follows:

A(n,m):
1. If n = 0 orm= 0, return 0.
2. Otherwise, returnA(n−1,m)+A(n,m−1)+1−A(n−1,m−1).

Fill in the boxes below in a way that will make the entire proof valid.

Theorem: For everyn,m∈ N, we haveA(n,m) = nm.

Proof: If s∈ N, let P(s) denote the proposition

“∀n,m∈ N . n+m= s =⇒ A(n,m) = nm .”

We will use a proof by strong induction
on the variable s .

Base case: A(0,0) = 0, soP(0) is true.

Inductive hypothesis:Assume P(0)∧·· ·∧P(s) (or: ∀m,n∈ N . n+m≤ s =⇒ A(n,m) = nm) is true for
somes∈ N.

Induction step:Consider an arbitrary choice ofn,m∈ N such thatn+ m= s+ 1. If n = 0 or m= 0, then
A(n,m) = 0 = nm is trivially true, so assume thatn≥ 1 andm≥ 1. In this case we see that

A(n,m) = A(n−1,m)+A(n,m−1)+1−A(n−1,m−1) (by the definition ofA(n,m))

= (n−1)m+n(m−1)+1− (n−1)(m−1) (by the inductive hypothesis)

= nm−m+nm−n+1−nm+n+m−1

= nm.

In every case wheren+m= s+1, we see thatA(n,m) = nm. ThereforeP(s+1) follows from the inductive
hypothesis, and so the theorem is true.2

Comment: Simple induction is not good enough. In the induction step we needto know that A(n−1,m−1) =
(n−1)(m−1). Since n−1+m−1 = s−1, to prove P(s+1) we need to know that both P(s) and P(s−1)
are true.
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Problem 3. [Modular arithmetic] (10 points)

Suppose thatx,y are integers such that

3x+2y = 0 (mod 71)

2x+2y = 1 (mod 71)

Solve forx,y. Find all solutions. Show your work. Circle your final answer showing all solutions forx,y.

Solution: There are many ways to solve this. Here is one. First, isolatex by subtracting the 2nd equation
from the 1st, yielding

x≡−1 (mod 71).

Plug this expression forx into the first original equation to get 3×−1+2y≡ 0 (mod 71), i.e.,

2y≡ 3 (mod 71).

Now gcd(2,71) = 1, so 2 has a multiplicative inverse modulo 71. One way to solve the equation fory is to
notice that 2y≡ 3+71≡ 74 (mod 71), hencey≡ 2−1×2y≡ 2−1×74≡ 2−1×2×37≡ 37 (mod 71).

Final answer: x≡−1 (mod 71), y≡ 37 (mod 71). Or, equivalently,x = 70+ 71n, y = 37+ 71m for
n,m∈ Z.

Alternatively, apply The Pulverizer to find the multiplicative inverse of 2 modulo71. We need to finda,b∈Z

such thata·2+b·71= 1, so write:

0·2+1·71= 71

1·2+0·71= 2

−35·2+1·71= 1

where we subtracted 35 times the 2nd equation from the 1st equation (here 35 = ⌊71/2⌋). Therefore,
2−1 ≡−35≡ 36 (mod 71). Now multiply both sides of the equation 2y≡ 3 (mod 71) by 36 to get

y≡ 36·2y≡ 36·3≡ 108≡ 37 (mod 71).

Alternatively, apply the extended Euclidean algorithm to find the multiplicative inverse of 2 modulo 71, and
then continue as above.

Alternatively, we could have started by isolatingy. We’d subtract 3 times the second equation from 2 times
the first equation to get

−2y≡−3 (mod 71),

continuing as before to calculate thaty ≡ 37 (mod 71). Then, we can plug this into one of two original
equations to find thatx≡−1 (mod 71).

Alternatively, solve forx in the first equation to get

x≡ 3−1×−2y≡ 24×−2y≡−48y≡ 23y (mod 71),

where we had to compute the modular inverse of 3 modulo 71 (namely, 23) alongthe way. Now plug this
expression forx into the second equation, yielding

2·23y+2y≡ 1 (mod 71),

i.e., 48y≡ 1 (mod 71). Now calculate the modular inverse of 48 modulo 71 to find the value ofy. Then we
can plug the known value fory into one of the equations and solve forx.
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