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Problem 1. [True or false] (20 points)

(@) or FALSE: Let the logical propositiofR(x) be given byx2 =4 — x < 1. ThenR(3) is true.
(False implies anything.)

(b) [TRUE] or FALSE: The propositiorP = (P A Q) is logically equivalent t® — Q.

(c) TRUEor|FALSE]: The propositior® = (PA Q) is logically equivalent tdP A Q) = P.
(Consider P= True, Q= False.)

(d) or FALSE: The propositionP A Q) V (-PV —Q) is a tautology, i.e., is logically equivalent to
True.

(e) TRUEOr|FALSE | 3ne N. (P(n) AQ(n)) is logically equivalent tq3n € N'. P(n)) A (3n€ N. Q(n)).
(Consider the propositions(R) = “n is odd” and Q(n) = “n is even”.)

) or FALSE: Ine N . (P(n) v Q(n)) is logically equivalent tg3n e N. P(n)) V (3ne N. Q(n)).

(9) [TRUE|or FaLsE: Yne N . (3ke N.n=2k)V (Fk e N.. n = 2k 4 1)).
(Every natural number is either odd or even.)

(h) TRUEOr[FALSE| ne N. ((Vke N.n=2k)V (vk € N. n= 2k 1)).
(For any ne N, take k= 100n+ 100, then n#£ 2k and n# 2k+ 1.)

l

(i) [TRUE|or FALSE: VneN. ((3ke N.n=K?) — (HKEN.n:_;(Zi—l))).

(For any ne N with n= k?, take/ = k.)
() TRUE or[FALSE]: If we want to prove the statemext <1 — x < 1 using Proof by Contrapositive,
it suffices to prove the statemexft> 1 = x> 1.
(Converse error. We'd need to provesxl = x? > 1.)
(k) or FALSE: If we want to prove the statemext < 1 = x < 1 using Proof by Contradiction, it
suffices to start by assuming th&t< 1 Ax > 1 and then demonstrate that this leads to a contradiction.
(X < 1Ax> 1is the negation of&<1 = x< 1.)
() TRUEOr|FALSE | LetS= {xe Z:x*=2 (mod 7}. Then the well ordering principle guarantees that
Shas a smallest element.
(S is not a subset of the natural numbers, so the well ordering pringipdgantees nothing. In fact, S
has no smallest element, since-8 — 7n satisfies k=2 (mod 7) for every nc N.)
(m) TRUE or: LetT = {neN:n?>=2 (mod 8}. Then the well ordering principle guarantees that
T has a smallest element.
(T is the empty set, so the well ordering principle guarantees nothing in teis)ca
(n) Suppose that, on ddyof some execution of the Traditional Marriage Algorithm, Alice likes the boy
who she currently has on a string better than the boy who Betty has on a string
TRUE or [ FALSE]: It's guaranteed that on every subsequent day, this will continue taibe tr
(Tomorrow, Betty might receive a proposal from some third boy who Alisea mad crush on.)
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ProLJen12.[\inconuﬂetetimzproof](10 pohﬁﬁ)

The algorithmA(-, -) accepts two natural numbers as input, and is defined as follows:

A(n,m):

1.fn=00orm=0, return 0.

2. Otherwise, returd(n—1,m)+A(n,m—1)+1—-A(n—1,m—1).

Fill in the boxes below in a way that will make the entire proof valid.

Theorem: For everyn,me N, we haveA(n,m) = nm

Proof: If s€ N, let P(s) denote the proposition
“YnnmeN.n+m=s = | A(nnm)=nm |”

We will use a proof b)\/ strong induction

on the variablé s |.
Base case: £0,0) =0, soP(0) is true.

Inductive hypothesis"e\ssumql P(O)A---AP(s) (or: Ymne N.n+m<s = A(n,m) = nm) ‘is true for
somes e N.

Induction step:Consider an arbitrary choice ofm € N such than+m=s+1. If n=0 orm= 0, then
A(n,m) = 0= nmis trivially true, so assume that> 1 andm> 1. In this case we see that

Anm) =An—1m+Anm-1)+1—-An—1m—1) (by the definition ofA(n, m))
=(n-1)m+nm-1)+1—(n—1)(m-1) (by the inductive hypothesis)
=nm-m+nm-n+1-nm+n+m-1
=nm

In every case wheme+m=s+ 1, we see thah(n,m) = nm ThereforeP(s+ 1) follows from the inductive
hypothesis, and so the theorem is true.

Comment: Simple induction is not good enough. In the induction step wealeaol that An—1,m—1) =
(n—1)(m—1). Since -1+ m—1=s—1, to prove Hs+ 1) we need to know that both(§ and Fs— 1)
are true.
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Problem 3. [Modular arithmetic} (10 points)

Suppose that,y are integers such that

3X+2y=0 (mod 71

2X+2y=1 (mod 7))
Solve forx,y. Find all solutions. Show your work. Circle your final answer showithg@utions forx, y.
Solution: There are many ways to solve this. Here is one. First, isala@tesubtracting the 2nd equation
from the 1st, yielding

x=-1 (mod 7J.
Plug this expression forinto the first original equation to getd8—1+2y =0 (mod 73, i.e.,

2y=3 (mod 71).

Now gcd2,71) = 1, so 2 has a multiplicative inverse modulo 71. One way to solve the equatigrisfto
notice that =34 71=74 (mod 71, hencey=2"1x2y=2"1x74=2"1x2x37=37 (mod 71.

Final answer:‘ x=-1 (mod 73, y= 37 (mod 7]).‘ Or, equivalently,x = 70+ 71n, y = 37+ 71m for
nmeZ.

Alternatively, apply The Pulverizer to find the multiplicative inverse of 2 moddloWe needto find,b € Z
such thag-2+b-71=1, so write:

0-2+1-.71=71
1.24+0-71=2
—-35.24+1.71=1

where we subtracted 35 times the 2nd equation from the 1st equation (herd BL/2]). Therefore,
2-1=_-35=36 (mod 71). Now multiply both sides of the equatioly 2 3 (mod 71 by 36 to get

y=36-2y=36-3=108=37 (mod 7J).
Alternatively, apply the extended Euclidean algorithm to find the multiplicativerse/ of 2 modulo 71, and
then continue as above.
Alternatively, we could have started by isolatipgWe’d subtract 3 times the second equation from 2 times
the first equation to get

—2y=-3 (mod 71,
continuing as before to calculate that 37 (mod 71). Then, we can plug this into one of two original
equations to find that= —1 (mod 773).
Alternatively, solve foix in the first equation to get

Xx=31x—2y=24x —2y=—48y=23y (mod 7)),

where we had to compute the modular inverse of 3 modulo 71 (namely, 23) thiervgay. Now plug this
expression fok into the second equation, yielding

2-23y+2y=1 (mod 72,

i.e.,, 48/=1 (mod 71). Now calculate the modular inverse of 48 modulo 71 to find the valye ©hen we
can plug the known value fgrinto one of the equations and solve for
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