
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2007 Instructor: Dr. Dan Garcia 2007-03-05

/ CS61C Midterm ☺
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name
Student ID Number

Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your SECTION TA (please circle) Aaron Alex Brian David Matt Michael Valerie
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

Instructions (Read Me!)
• Don’t Panic!
• This booklet contains 7 numbered pages including the cover page. Put all answers on these pages; don’t

hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,

laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly zone” spare
seat/desk between students.

• Question 0 (1 point) involves filling in the front of this page and putting your name & login on every front
sheet of paper.

• You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or
calculators. You may use one page (US Letter, front and back) of notes and the green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will
deduct points if your solution is far more complicated than necessary. When we provide a blank, please fit
your answer within the space provided. You have 3 hours...relax.

 Question 0 1 2 3 4 5 Total
Minutes 1 36 36 36 36 36 180
Points 1 15 14 15 15 15 75

Score

Name: _______________________________ Login: cs61c-____

2/7

Question 1: Is this the best midterm in memory? No, we freed it! (15 pts, 36 min)
a) I have N bits to represent data, and every bit pattern has a unique meaning.

I want to represent 3 times as many things. How many more bits do I need?

b) We are given two nibbles, A (=0xF) and B (=0b0010), and we wish to calculate their SUM = A + B.
We only have a nibble to store the SUM result. What is SUM if all three nibbles (A, B, SUM) were…

 Algorithm: SUM = encode(decode-into-decimal(A) + decode-into-decimal(B))

 SUM (single hex
character)

Decimal number
SUM encodes

Was there
overflow?

…sign magnitude? 0x

…ones complement? 0x

…unsigned? 0x

…twos complement? 0x

...encoded with a bias of 7 (like the 0x

way the exponent is encoded w/float)

c) Put the following in chronological order. We’ve started it for you.

 Code and Data from various places are stitched together.
1 A CS61C student is assigned a project that implements big_nums.
 Execution begins at main.
 The student writes his or her code in C.
 Link tables are produced.
 MAL is translated into TAL.
 Static, code, and global space are reserved/initialized in memory.
 The student’s C code is translated into MIPS.
 Links are “edited”

d) Assume we have just enough bits to byte-address 51210 zebibytes. We

want to define some number of the most-significant bits to encode
910 x 250 things, and some number of the least-significant bits to encode
2,00010 things. How many things can we encode with the remaining bits?
Use IEC language, like “16 mebithings”. Show your work.

Static Stack Heap
 1 typedef struct bignum {

 2 int len;
 3 char *num;
 4 char description[100];
 5 } bignum_t;

 6 bignum_t *res;

 7

 8 int main() {

 9 bignum_t b;

 10 b.num = (char *) malloc (5 * sizeof(char));

e) For every line
of code on the
right, we want
to know if any
memory is
used, and if
so, where and
how much. If
zero, leave it
blank.

 // more code below

Name: _______________________________ Login: cs61c-____

3/7

Question 2: If swimming in the 61Æ6+1Æ7 Cs, keep “a float” (14 pts, 36 min)
The figure below shows the layout of the different types of 32-bit float numbers on a not-to-scale real
number line (with zero in the center, and NaNs considered to be further from zero than infinity).

For each of the (a-f) values below, draw marks below the number line (like we’ve done for 0) indicating
where the value would fall. Label the mark with the corresponding letter and actual value below it.

a) The sign magnitude number closest to ∞. b) The result of casting the double number
closest to -∞ (but is not -∞) into a float.

c) 1/(X+1), where X is the largest ones

complement number.
d) The number represented by the float bits

0x80000001.

e) The number represented by the float bits
0x00000000 times the number represented by
the float bits 0xFFFFFFFF
(using normal floating point multiply mul.s)

f) The difference between the int value closest
to -∞ and the float that can most closely
represent that int’s value.

g) The default float rounding mode often needs to break
ties for numbers that fall between floats it can represent.
What is the largest unsigned int that falls exactly
between two floats, and what does it round to?
(e.g., If this were in decimal, you might write “3.5 Æ 4”).
Show your work below, and put your answer in the box.
You may leave your result as a (simplified) expression.

Negative Zero Positive Zero

Least negative denorm Least positive denorm

Most negative denorm Most positive denorm

Least negative normalized number Least positive normalized number

Most negative normalized number Most positive normalized number

Negative Infinity

“Least negative” NaN “Least positive” NaN

Positive Infinity

“Most negative” NaN “Most positive” NaN

0 Sign bit: 1 Sign bit: 0

Name: _______________________________ Login: cs61c-____

4/7

Question 3: Goodness, Grandma, what bignums you have! (15 pts, 36 min)
Part A: After your extensive C bignum experience, you were hired by Lawrence Berkeley Labs to
make an arbitrary precision math package. The scientists use scientific notation and keep track of
significant figures. The scientists have written a function called sci_bignum_cmp as shown below.
Unfortunately, the implementation has at least one bug. In the boxes at the bottom, briefly explain all
of them and give sample values for a and b (i.e. 1.23 x 104) that causes sci_bignum_cmp() to reveal
the bug. You may not necessarily use all the boxes.

#define POS '+'
#define NEG '-'
typedef struct sci_bignum {
 char sign; // POS or NEG
 char *significand; // null-terminated string of decimal digits ('.' implicit)
 unsigned int num_sigfigs; // equal to strlen(significand)
 int exponent;
} sci_bignum_t;

// Compare a to b; return <0 if a < b, 0 if a == b, or >0 if a > b (just like strcmp)

int sci_bignum_cmp(sci_bignum_t *a, sci_bignum_t *b) {

 if (a->exponent != b->exponent) {

 return (a->exponent < b->exponent ? -1 : 1);

 } else if (a->sign != b->sign) {

 return (a->sign < b->sign ? -1 : 1);

 } else {

 for(int i = 0; a->significand[i]; i++) {

 if(a->significand[i] != b->significand[i])

 return (a->significand[i] < b->significand[i] ? -1 : 1);
 }
 }
}

Bug Description Values for a and b
that reveal the bug

What a correct
sci_bignum_cmp

should return

What this buggy
sci_bignum_cmp

returns / does

a =

b =

a =

b =

a =

b =

a =

b =

As an example, to store the number 1.23 x 104, the sign would be the char '+', the
significand would be the null-terminated string "123", num_sigfigs would be 3, and the
exponent would be 4. There is an implicit decimal point after the first significand digit.

Name: _______________________________ Login: cs61c-____

5/7

Question 3: Goodness, Grandma, what bignums you have! (cont’d)
Part B: The scientists also use vectors
quite a bit, so they wrote the following C
struct:

typedef struct sci_vector {
 sci_bignum_t *elts;
 unsigned int num_elts;
} sci_vector_t;

The scientists want the elements of a
given vector to have the same number of
significant digits. In other words, each
element in a vector should be truncated to the smallest num_sigfigs in the vector. They want you to
help them write a function (by filling in the blanks) that will “clean up” its argument vector by modifying
all its sci_bignums to have the appropriate number of significant digits. Any excess allocated space
should be freed so there’s no wasted memory. Avoid memory leaks.

#define MIN(a, b) ((a)<(b)?(a):(b))

void clean_vector(sci_vector_t *vec) {
 unsigned int min_sigfigs = 0xFFFFFFFF; // Initialize to biggest unsigned int

 /* get min significant digits */
 for (unsigned int i = 0; i < vec->num_elts; i++)

 min_sigfigs = MIN(_________________________ , ____________________________);

 /* truncate all elts to have min_sigfigs */
 for (unsigned int i = 0; i < vec->num_elts ; i++) {
 sci_bignum_t *b = _____________________________ //
convenient reference

 if (______________________________ > ______________________________) {
 char *new_significand = (______)
malloc(______________________________);
 ___ // for
strcpy

 strcpy(new_significand, b->significand);

 __

 __

__

 __

 __

 }
 }
}

Name: _______________________________ Login: cs61c-____

6/7

Question 4: fun with MIPS ... more naughty bits! (15 pts, 36 min)
What follows is an inefficient MIPS function. Read it carefully, and answer the questions below.
The definition of div can be found in your green sheet, column ↑ (div a,b ∏ lo=a/b, hi=a%b).
fun: mov $v0, $0
 li $s0, 1
loop: beq $a1, $0, end
 addiu $a1, $a1, -1
 sll $s0, $s0, 1
 div $a0, $s0
 mfhi $s1
 or $v0, $v0, $s1
 j loop
end: jr $ra

// Precondition: y < 31

unsigned int fun(unsigned int x,
 unsigned int y)
{

}

a) Briefly, explain what fun returns (assuming y < 31).

Don’t describe the algorithm; explain how the return value relates to x and y.

b) Write optimized C code for fun in the box (make it as compact and efficient as possible).
That is, think of all the C tricks you know and try to author it in the fewest characters possible.

c) Uh oh, we’ve broken some calling conventions! What should we add to the
beginning (before mov $v0, $0) and end (before jr $ra) of fun to correct this? Help!

BEGIN END

Name: _______________________________ Login: cs61c-____

7/7

Question 5: He’s a unix. He’s definitely a unix. He’s dead! (15 pts, 36 min)
Assume (for simplification) that main returns a value to its caller (Unix) through standard MIPS
procedure calling conventions. We wish to see how long our command-line inputs arguments are:

unix% count_argument_characters
0

unix% count_argument_characters I love cs61c!
11

Implement count_argument_characters in MAL MIPS. Follow the hints given by the comments;
you may not need to use all the lines.

main: ______________________ # ans=0

word: addiu ____________, -1 # Decrement

 beq ____________, done # We’re done!

 ______ $t0, ____, ____ # change $t0

 ______________________ #

 ______________________ #

letr: ______________________ #

 beq $t2, _______, word # end of word

 ______________________ #

 addiu $t1, $t1, 1 # increment $t1

 ______________________ #

 j ____________________ # keep processing

done: jr $ra

