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Problem 2 Solution

2a) The temperature and pressure are given, so we can find the number of molecules per unit
volume directly from the ideal gas law,

E_ _]i__ 105Pa o
V kT 138x10-2J/K x 273K

2.65 x 1025%.
m

2b) Recall the definition of root-mean-squared speed is, vrms = v/ (v?). To calculate the average
speed squared we use the Maxwell-Boltzmann distribution,

1 oo _mv2
By M 32 588 3. .2
(v*) N/o 4N7r(2ﬂ_kT) e T v” X vidv (1)
. m \3/2 © —me?
= 47T(27rkT) /o e 2kT v dv (2)

This is an example of a gaussian integral. Gaussian integrals will be the most common form of
integral you will encounter in physics and for this reason it is well worth your time to memorize
the fundamental result:
o0 2 T
/ e dr=,/—.
o a

As always you can look up this and other gaussian integrels but there is a useful technique for
generating all gaussian integrals from this one. The technique is to treat a as a parameter and take
the derivative with respect to a. To get the integral of interest in this problem we have to do this

twice:
£([ewen )
ok a

da
o0
= / —g?e’ dy = —ﬁa“?’ﬂ,
o 2

Because the function we’re integrating is the same from —oo to 0 as it is from 0 to co (an even
function) we can multiply it by 2 and integrate from 0 to oco:

2 / % 2e—as gy — VT -3/2
A 5

. /OO xQe—azzdl_ _ ga—3/2.
0

Finally, using the derivative technique again we obtain,

4 (/ e dr = ﬁa_3/2>
0 4

da
i /oo $4e—azzdx = E)’_ga—S/Q,
0



which is the integral we were looking to find. Plugging this result into Eq. (2) gives,

2kT 8 “2kT 2m m
Then the root-mean-squared speed is,

(v*) = dn(

3kT

m

Urms =

It’s nice to see the derivation of this result from scratch but this was not required to get full credit
on this problem.

2c) See section 18-6 of your text for a complete discussion of this problem including illustrations.
Consider a cylinder of radius R. = R + r, any nitrogen molecules whose centers are within this
cylinder will be struck by a menthol molecule moving through it. The length of the cylinder is given
by the average speed of the menthol molecules times the time interval under consideration, say At,
i.e. L. = vAt. The volume of this cylinder is Ve=nR3L, = 7(R+7)25At. The number of collisions
that a menthol molecule will experience, call it s, is just the number of nitrogen molecules in this
cylinder, given that the density of the nitrogen is N/V this is, s = #collisions= N /V -m(R+7)%0At.
Then the mean free path is,

Pe DAt - 1
- N/V -m(R+r)20At (R +1)2 (g)

The factor of v/2 mentioned in the statement of the problem comes from taking into account the
fact that the nitrogen molecules are moving and not stationary. This reasoning was not required
to get full credit.

2d) Given that the displacement z, mean free path [ and number of collisions s are related by
z? = sl we can substitute in what we know about number of collision and mean free path in a
time ¢ and find,

N 1 vt

2 2=
z° = —m(R+r)*vt - = .

14 (r(R+7)F)?  w(R+7)2F

Now, since we are given displacement z we can invert this to find the time ¢,

o m(R + 1")2%9c2

)
(%

and because we know o = \/8kT /M we have everything that we need to find the time.

2e) Plugging in the various numbers yields,

T(R+71)282? 213 x 10%m 3
t ; i

A neat and useful computational fact is that there are 7 x 107sec/year, this is accurate to 1%.

Putting this in we get,

2f) This is an extremely long time and I suspect that it does not agree with your experience that
you can smell the menthol only briefly after someone across the room opens the jar. The reason for
this is that collisional diffusion is not the predominant effect for spreading the menthol molecules
around the room. Instead there are usually significant convection currents (breezes on the scale of
the room) that carry the molecules to your nose more quickly. You can read more about convection
in section 19-10.




Problem 3

Part A:

In this configuration, the heat output of the first engine is the heat input of the
second engine. Lete; = 1(1— %) and e; = (1 — %) be the efficiencies of
the first and second engines respectively. Note that each engine is operating at

50% of its Carnot efficiency, as stated in the problem.

Qm =W1+0Qn

Wi =e1-Qm = Qu=(1-e) Qm
Wo=e-Qm=e-Qu=e-(1-e) Qm
Wiotar = W1 + Wa = (e1 +e2 —e1-€2)Qm1

Let r be the rate at which coal is being burned. Then A0m — yp,

Al
_ AVvtot‘al o AQHl
Dy v (e1 +ex—e1-e) As

=p=(e1+e—e -e)-1b

- = P _ 1k

(61+€2—€1'€2)'b S

’ Part B:

For this part, we'll look at the engine as a whole and apply the first law of
thermodynamics.

AQin AW AQout

Qin = W+ Qout = Af :E‘F Af
_ AQout_ AQW
=rb=p+ AL =p+ AL
A
= TQtW =rb— p = 2665 MW

Part C:




AQW - Am

Q = mcAT = 7At = ECWAT
AQw
Am At kg
275 -1 jacsy
= A iy AT 06000 .



1 Huang, Spring 2009 Problem 4 (25 points)

An ideal monoatomic gas in a thermally insulated box is separated by a thermally conducting
partition into two parts. There are n moles of gas in each part. Initially the gas in part A
has temperature 77 and ovlume V; and in B temperature 75 and volume V5. The partition
can slide without friction and the two parts have the same pressure, P.

(a) (10 pts.)  What is the final temperature when thermal equilibrium is reached?

Solution 1: The paritition is free to slide and hence will slide in order to balance the
forces it feels from the gas particles in each of the two partitions. Therefore,

(1 pt.) This is a constant pressure (isobaric) process.

(1 pt.) At thermal equilibrium, the temperatures of the two partitions, 7', are the same.
(1 pt.) By the Ideal Gas Law, the final volumes of the two partitions are the same, W
(5 pts.) IGL: PV; = nRT; and PV; = nRT, and PY1H2 = nRT.

(2 pts.) Combining these gives

PV PV, T1 T, Ti+Ty

~ 2nR  2nR 2 2 2

Solution 2: We can use the heat capacity at constant pressure

(1 pt.) At thermal equilibrium, the temperatures of the two partitions, 7', are the same.

(1 pt.) This is a constant pressure (isobaric) process. Therefore, to calculate heat, we have
to use the heat capacity at constant pressure, Cp.

(1 pt.) The gases on either side do not have to be the same, they just have to be ideal. For
ideal monoatomic gases, Cp = %nR.

(5 pts.) Since the box is thermally insulated, no heat enters or leaves the WHOLE system
(including both gas A and B). Therefore, the any heat aborbed by one must be lost by the
other: CpATy = 3nR(T —T1) = Qa = —Qp = —5nR(T — Th) = —CpATp.

(2 pts.) Solving for T' gives

T, + T
T-Ti=—(T-T,) = T= 1;“ 2
Solution 3: This is almost exactly like Solution 2, but instead of setting heats equal, we

set, A Fyy for the entire system equal to 0. This must be justified once again by the fact that
the box is thermally insulated AND does not expand or contract as a whole (and so there is
no net work for the system).



(b) (12 pts.) Calculate the entropy change for the gas in A and for the gas in B. (Please
specify the reversible path that you choose for this calculation.)

Solution 1: The simplest reversible path to choose to simply describe the system is:

(3 pts.) Isobaric compression (for the one that started out hotter) or expansion (for the one
that started out colder)

However, if one were to actually calculate the entropy change from the reversible path, one
simpler choice would be isothermal expansion followed by isochoric heating (for the one that
started out colder) and isothermal compression followed by isochoric cooling (for the one that
started out hotter):

(6 pts.) Suppose 71 < T, and so Vi < V,. For the initially colder A gas, the isothermal
expansion connects the two points (Vi, P, T7) and (VIQVQ, Vf}f‘é P, Tl). We found the pres-
sure coordinate of the second point by setting PV = const. along an isotherm. Along this

isotherm, the internal energy doesn’t change and so Qjisotherm = Wisotherm = NnRI1 lnvf =

nRT In Vl%lez Since temperature doesn’t change along this curve, the change in entropy

here is just ASisotherm = Q‘“’j&% = nRln VELV&VQ Note that from the two IGL equations

PV; = nRT;, we conclude that T} /T = V1 /Va and so we can write ASisotherm = nR1n Tl%TlTQ

Next, we have isochoric heating connecting (V1'2W2, ijr/lvg P, T1) to (Vl'QH/?, P, T1§T2). We
have dQisochoric = A Fisochoric = %anT since no work is done in isochoric processes. Since

temperature is no longer constant for this stepﬁﬂwe need to work with differentials. We have
3

ASjsochorie = | “Hisghers = §nR [ 4F = §nRIn 7 = fnRIn Bl

(2 pts.) Finally, the total entropy change is

T+ Ty
274

5
AS A = ASisothermal + ASisochoric = §nR In

Completely analogously, we find,

5 T+ Ty
ASp = -nR1
SB 2nR n T

You could also just use the formula for the entropy change for an ideal gas which works
whether or not the process is reversible:

T V
ymL

d
AS = gann T, v,

(1 pt.) Realizing that d = 3 for monoatomic ideal gas.



Solution 2 for part (b):  Again, a maximum of 3 points are awarded for the specification
of a reversible path. Then, we realize that we can use the equation AS = [ % =Cp[4 =
%nR In(Ty/T;) for a reversible isobaric process. This reproduces the previous results. It must
be clear that you are using Cp and not C'y or any other heat capacity and that Cp = %nR is
the same for all ideal monoatomic gases.

(c) (3 pts.) Calculate the entropy change of the combined system of A and B, ASiotal-
Solution: You need to add the results of part (b):

(1 pt') AStotal = ASA + ASB

2
(2 pts.) ASioral = InRIn LT

(d) (4 bonus pts.) Show that ASioia > 0.

Solution 1: Since it is a square, we know (T} — T%)? > 0. Expanding the left hand side
gives TZ — 211 To + T3 > 0. Adding 47175 to both sides gives T2 + 2T1Ts + T3 > 4Th Ty or
(Ty +T5)? > 4T Ty. Assuming we are not in a crazy situation where exactly one of the T}’s
(T1+T3)? >1

is negative (on the absolute Kelvin scale; what does that mean?), then we have

4T To
which implies In (7:11;1 %)2 > 0 and so ASipta1 > 0.
Solution 2: Again, we want to prove (7:11;1 77:22)2 > 1. Multiply by 4, expand the square

and cancel terms from the numerator and denominator to get % + 2+ % >4 orzx+ % > 2
where x = T /T>. We want to prove this inequality for all positive z. As z — oo and x — 0,
we have = + % — 00. Therefore, there must be at least one local minimum somewhere and if
there is exactly one then it has to be a global minimum.

Well, setting the derivative equal to zero gives 1 — ;%2 =0 and x = 1 is the only positive
solution. We automatically know that it is a minimum by the previous argument, but we can
check the second derivative: % »—1 = 2 > 0 which shows that z = 1 is a local minimum.
Since there is only one, x = 1 is a global minimum. But, 1 —&—% = 2 > 2. Thus, we have proven

the inequality.



