








Problem 3

Part A:

In this configuration, the heat output of the first engine is the heat input of the
second engine. Let e1 = 1

2 (1− T2
T1

) and e2 = 1
2 (1− T4

T3
) be the efficiencies of

the first and second engines respectively. Note that each engine is operating at
50% of its Carnot efficiency, as stated in the problem.

QH1 = W1 + QL1

W1 = e1 · QH1 ⇒ QL1 = (1− e1) · QH1

W2 = e2 · QH2 = e2 · QL1 = e2 · (1− e1) · QH1

Wtotal = W1 + W2 = (e1 + e2 − e1 · e2)QH1

Let r be the rate at which coal is being burned. Then ∆QH1
∆t = rb.

p =
∆Wtotal

∆t
= (e1 + e2 − e1 · e2) · ∆QH1

∆t
⇒ p = (e1 + e2 − e1 · e2) · rb

⇒ r =
p

(e1 + e2 − e1 · e2) · b
= 122

kg
s

!

Part B:

For this part, we’ll look at the engine as a whole and apply the first law of
thermodynamics.

Qin = W + Qout ⇒
∆Qin

∆t
=

∆W
∆t

+
∆Qout

∆t

⇒ rb = p +
∆Qout

∆t
= p +

∆QW
∆t

⇒ ∆QW
∆t

= rb− p = 2665 MW

!

Part C:

1



Q = mc∆T ⇒ ∆QW
∆t

=
∆m
∆t

cW∆T

⇒ ∆m
∆t

=
∆QW

∆t
mW∆T

= 106000
kg
s

!
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1 Huang, Spring 2009 Problem 4 (25 points)

An ideal monoatomic gas in a thermally insulated box is separated by a thermally conducting
partition into two parts. There are n moles of gas in each part. Initially the gas in part A
has temperature T1 and ovlume V1 and in B temperature T2 and volume V2. The partition
can slide without friction and the two parts have the same pressure, P .

(a) (10 pts.) What is the final temperature when thermal equilibrium is reached?

Solution 1: The paritition is free to slide and hence will slide in order to balance the
forces it feels from the gas particles in each of the two partitions. Therefore,

(1 pt.) This is a constant pressure (isobaric) process.
(1 pt.) At thermal equilibrium, the temperatures of the two partitions, T , are the same.
(1 pt.) By the Ideal Gas Law, the final volumes of the two partitions are the same, V1+V2

2 .
(5 pts.) IGL: PV1 = nRT1 and PV2 = nRT2 and P V1+V2

2 = nRT .
(2 pts.) Combining these gives

T =
PV1

2nR
+

PV2

2nR
=

T1

2
+

T2

2
=

T1 + T2

2

Solution 2: We can use the heat capacity at constant pressure

(1 pt.) At thermal equilibrium, the temperatures of the two partitions, T , are the same.
(1 pt.) This is a constant pressure (isobaric) process. Therefore, to calculate heat, we have
to use the heat capacity at constant pressure, CP .
(1 pt.) The gases on either side do not have to be the same, they just have to be ideal. For
ideal monoatomic gases, CP = 5

2nR.
(5 pts.) Since the box is thermally insulated, no heat enters or leaves the WHOLE system
(including both gas A and B). Therefore, the any heat aborbed by one must be lost by the
other: CP ∆TA = 5

2nR(T − T1) = QA = −QB = −5
2nR(T − T2) = −CP ∆TB.

(2 pts.) Solving for T gives

T − T1 = −(T − T2) =⇒ T =
T1 + T2

2

Solution 3: This is almost exactly like Solution 2, but instead of setting heats equal, we
set ∆Eint for the entire system equal to 0. This must be justified once again by the fact that
the box is thermally insulated AND does not expand or contract as a whole (and so there is
no net work for the system).
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(b) (12 pts.) Calculate the entropy change for the gas in A and for the gas in B. (Please
specify the reversible path that you choose for this calculation.)

Solution 1: The simplest reversible path to choose to simply describe the system is:

(3 pts.) Isobaric compression (for the one that started out hotter) or expansion (for the one
that started out colder)

However, if one were to actually calculate the entropy change from the reversible path, one
simpler choice would be isothermal expansion followed by isochoric heating (for the one that
started out colder) and isothermal compression followed by isochoric cooling (for the one that
started out hotter):

(6 pts.) Suppose T1 < T2 and so V1 < V2. For the initially colder A gas, the isothermal
expansion connects the two points (V1, P, T1) and

(
V1+V2

2 , 2V1
V1+V2

P, T1
)
. We found the pres-

sure coordinate of the second point by setting PV = const. along an isotherm. Along this
isotherm, the internal energy doesn’t change and so Qisotherm = Wisotherm = nRT1 ln Vf

Vi
=

nRT1 ln V1+V2
2V1

. Since temperature doesn’t change along this curve, the change in entropy
here is just ∆Sisotherm = Qisotherm

T1
= nR ln V1+V2

2V1
. Note that from the two IGL equations

PVi = nRTi, we conclude that T1/T2 = V1/V2 and so we can write ∆Sisotherm = nR ln T1+T2
2T1

.
Next, we have isochoric heating connecting

(
V1+V2

2 , 2V1
V1+V2

P, T1
)

to
(

V1+V2
2 , P, T1+T2

2

)
. We

have dQisochoric = d∆Eisochoric = 3
2nRdT since no work is done in isochoric processes. Since

temperature is no longer constant for this step, we need to work with differentials. We have
∆Sisochoric =

∫ dQisochoric
T = 3

2nR
∫

dT
T = 3

2nR ln Tf

Ti
= 3

2nR ln T1+T2
2T1

.

(2 pts.) Finally, the total entropy change is

∆SA = ∆Sisothermal + ∆Sisochoric =
5
2
nR ln

T1 + T2

2T1

Completely analogously, we find,

∆SB =
5
2
nR ln

T1 + T2

2T2

You could also just use the formula for the entropy change for an ideal gas which works
whether or not the process is reversible:

∆S =
d

2
nR ln

Tf

Ti
+ ln

Vf

Vi

(1 pt.) Realizing that d = 3 for monoatomic ideal gas.
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Solution 2 for part (b): Again, a maximum of 3 points are awarded for the specification
of a reversible path. Then, we realize that we can use the equation ∆S =

∫ dQ
T = CP

∫
dT
T =

5
2nR ln(Tf/Ti) for a reversible isobaric process. This reproduces the previous results. It must
be clear that you are using CP and not CV or any other heat capacity and that CP = 5

2nR is
the same for all ideal monoatomic gases.

(c) (3 pts.) Calculate the entropy change of the combined system of A and B, ∆Stotal.

Solution: You need to add the results of part (b):

(1 pt.) ∆Stotal = ∆SA + ∆SB

(2 pts.) ∆Stotal = 5
2nR ln (T1+T2)2

4T1T2

(d) (4 bonus pts.) Show that ∆Stotal ≥ 0.

Solution 1: Since it is a square, we know (T1 − T2)2 ≥ 0. Expanding the left hand side
gives T 2

1 − 2T1T2 + T 2
2 ≥ 0. Adding 4T1T2 to both sides gives T 2

1 + 2T1T2 + T 2
2 ≥ 4T1T2 or

(T1 + T2)2 ≥ 4T1T2. Assuming we are not in a crazy situation where exactly one of the Ti’s
is negative (on the absolute Kelvin scale; what does that mean?), then we have (T1+T2)2

4T1T2
≥ 1

which implies ln (T1+T2)2

4T1T2
≥ 0 and so ∆Stotal ≥ 0.

Solution 2: Again, we want to prove (T1+T2)2

4T1T2
≥ 1. Multiply by 4, expand the square

and cancel terms from the numerator and denominator to get T1
T2

+ 2 + T2
T1
≥ 4 or x + 1

x ≥ 2
where x = T1/T2. We want to prove this inequality for all positive x. As x→∞ and x→ 0,
we have x + 1

x →∞. Therefore, there must be at least one local minimum somewhere and if
there is exactly one then it has to be a global minimum.

Well, setting the derivative equal to zero gives 1− 1
x2 = 0 and x = 1 is the only positive

solution. We automatically know that it is a minimum by the previous argument, but we can
check the second derivative: 2

x3

∣∣
x=1

= 2 > 0 which shows that x = 1 is a local minimum.
Since there is only one, x = 1 is a global minimum. But, 1+ 1

1 = 2 ≥ 2. Thus, we have proven
the inequality.


