


Problem 2 Solution

Volume changes from V to V ′ and the temperature changes from T to T ′.

a [1pt] V ′ = V (1 + β∆T )

[1pt] ∆V = V β∆T

b [2pts] PV = NkT

[2pts] PV ′ = NkT ′

[2pts] V ′ − V = ∆V = Nk
P ∆T

[2pts] β = ∆V
V ∆T = Nk

PV = 1
T

Problem 3 Solutions

Part A

This is a straightforward application of the First Law of Thermodynamics. Remember sign conven-
tions

∆E = Q−W

∆E = (−85J)− (−55J)
∆E = −30J

Part B

Since internal energy is a state variable, the change in energy along path cda is the opposite of that
along path ac. Apply First Law of Thermodynamics again

∆E = Q−W

30J = Q− 38J

Q = 68J

Part C

Work in both paths cda and abc take place during isobaric processes. Constant pressure allows us
to write

W = P∆V

∆V for path cd is the opposite of that of path ab, and we were given work along path cd in part B.
Because no work is done during the isochoric processes, we can write.
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Wcd = Pd∆Vcd

Wab = Pa∆Vab

Wab = 2.2Pd(−∆Vcd)
Wab = −2.2Wcd

Wab = (−2.2)(38J)
Wab = −83.6J

That is, 83.6 J of work is done on the gas.

Problem 4 - 25 points

A hollow, thermally insulated container holds 1 mole of monatomic cas at 0 ◦C. Some firecrackers
in the container explode and suddenly heating the gas to 50 ◦C. Beginning with the First Law of
Thermodynamics (i.e. not with the explicit expression for the entropy of an ideal gas that we de-
rived in class), calculate the change in entropy of the gas

Note: Throughout this solution I will note the approximate value of points awarded for a con-
cept. At the end of the solution I include a list of common mistakes. Also, there are several
subtleties to this problem, and you were not expected to point them out or fully understand them.
Regarding these subtleties, I will point them out and I was very happy that some of you recognized
these, but you were not penalized for not recognizing them.

In this problem a gas is rapidly heated inside a container. We assume the container is rigid so that
it stays at constant volume when the gas is heated. Thus, since the gas is kept at constant volume,
it does no work:

V constant implies dV = 0 and therefore dW = PdV = 0

(recognizing this is a constant volume process is worth 5 points). The container is thermally
insulated, so no heat flows from the environment into or out of the container: ∆Qenvironment = 0.
However, the gas is heated by the firecrackers, ∆Qgas > 0. Combining what we have said, we can
write down the First Law of Thermodynamics for the gas:

dE = dQ− dW

→ dW = 0 since constant volume →
= dQ

For an ideal, monatomic gas (3 degrees of freedom) we have E = 3/2nRT so dE = 3/2nRdT and
hence

dQ = dE =
3
2
nRdT

(Writing down the First Law and then doing the above is worth ∼ 10 points).

We are now prepared to find the change the entropy of the gas. For a quasistatic process, the
infinitesmal change in entropy is given by:

dS =
dQ

T
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so that the total change in entropy is given by

∆S =
∫

dS =
∫

dQ

T

(This was worth 5 points). Plugging in what we have from above:

∆S =
∫

dQ

T

=
∫ Tf

Ti

3
2
nR

dT

T

=
3
2
nR ln

(
Tf

Ti

)

Therefore, for one mol of monatomic gas at an initial temperature of Ti = 0 ◦C = 273K and heated
to a final temperature of Tf = 50 ◦C = 323K at constant volume, the change in entropy is:

∆S =
3
2
n R ln

(
Tf

Ti

)
=

3
2
(1 mol)

(
8.31

J
K mol

)
ln

(
323 K
273 K

)
= 2.09 J/K

(This was worth approximately 5 points). There is something subtle about the above derivation
for the change in entropy. The heating of the gas by the exploding firecrackers is not a quasistatic
process and therefore dS 6= dQ/T along the firecracker path. However, entropy is a state variable
which means that it only depends on the initial and final states. So if we can find a quasistatic
path that takes us from the initial state to the final state, we can calculate the change in entropy
along the quasistatic path using dS = dQ/T . Then, by the fact that entropy is a state variable and
therefore independent of the path taken, the value of ∆S calculated along the quasistatic path also
tells the change in entropy for the non-quasistatic process of the firecrackers exploding and heating
the gas. Thus in the above when we set dS = dQ/T and integrate, we are implicitly assuming we
are taking a quasistatic, constant volume path to the final state. It is absolutely fantastic if you
recognized this, but you were not penalized for not recognizing it.

Common mistakes. Many of the mistakes made could have been avoided by thinking about what
is physically happening and explaining it in words before writing down any equations. I highly
recommend in the future outlining in words what the apparatus and physical process are and what
is happening before writing the first equation that pops into your head. Remember, physics is not
math, it is physics and therefore requires words and descriptions!

(1) One of the most common mistakes was saying that ∆S = ∆Q/T . This is not true in general,
but only for a constant temperature (isothermal) process:

∆S =
∫

dQ

T
6= 1

T

∫
dQ =

∆Q

T

In other words, the temperature may be changing (as in this problem) and therefore is not
constant and cannot be brough outside the integral. I took off 5 - 10 points for this mistake.

(2) Suddenly heated does not mean adiabatic. Adiabatic means no heat transfer, and in this
problem heat is added to the gas raising its temperature. If you assumed the process is
adiabatic (dQ = 0) then you would have no net change in entropy: dS = dQ/T = 0, but
it is physically clear that the gas is getting more disordered by the heating so we should
expect a positive entropy change in the gas. The confusion here I believe stems from the
word “suddenly”. In brief, when we speak about something being sudden and adiabatic
we are really talking about two different time scales. Adiabatic processes are quasistatic,
i.e they are slow compared to the time scale necessary to establish equilibrium (tequilib).
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Adiabatic processes also transfer no heat, so they must happen faster than heat can be
conducted (theat) and this is usually what is meant when we say an adiabatic process is
sudden. This can be summarized as:

Adiabatic: tequilib ¿ tprocess ¿ theat

(3) Many people started with the First Law (dE = dQ − PdV and then said that for an ideal
gas we have PV = nRT so dV = nRdT/P . This is not true, because in general both the
temperature and pressure change, so a change in volume is given by:

V =
nRT

P

→ dV = nR d

(
T

P

)

= nR

(
dT

P
− TdP

P 2

)
6= nR

dT

P

Note that if you thought about the problem for a second, you would recognize that it is
constant volume and therefore dV = 0 for this problem and you could have avoided this
messiness.

(4) Too many significant figures. Two or three (I allowed up to four) significant figures are okay.
If you gave me 5+ significant figures in your final answer, I subtracted a point.

Problem 5

[25] A container with one mole of atomic oxygen at 0 C is brought into thermal contact with a
container holding one mole of molecular oxygen (O2) at 100 C. The containers are thermally isolated
from the outside world, and they remain sealed; the gases are not mixed. Note that at T = 100 C,
the vibrational degrees of freedom of the O2 are not excited. What is the final temperature if each
container is maintained at

• [12] constant volume;

[0] From the notecard:
Q = nCv∆T

A common error made here was using mCv instead of nCv; Cv for an ideal gas is already in
moles so the masses of the particles need not appear.

[0] Also from the notecard:

Cv =
d

2
R

[4] The two containers are thermally isolated from their environment, so the total energy is
conserved:

QO = −QO2

or, more usefully for part b,

Cv,O(Tf − T 1
i,O) = −Cv,O2(Tf − T 2

i,O2
)

A common error made here was forgetting the minus sign.

[4] Correct expression for Cv, including the correct degrees of freedom for each gas:
3
2
R(Tf − Ti,O) = −5

2
R(Tf − Ti,O2)
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[3] Solve for Tf :

Tf =
1
8
(5Ti,O2 + 3Ti,O)

[1] Correct numerical result with correct units:

Tf =
1
8
(5× 373 K + 3× 273 K) = 336 K

Many people gave correct answers working the problem in Celsius; this worked fine in this
problem, but in general its always best to convert everything to SI to avoid possible errors.

• [13] constant pressure.

Lazy person’s solution: this problem is exactly the same as the prior problem, except the
specific heat of the gas should be given at constant pressure instead of at constant volume.
Thus:

[12] Realizing you can take your final relation from the last problem and replace Cv with
Cp.

[1] Correct numerical answer with correct units.

Lots of work solution (most people did this):

[0] From the notecard:
Q = nCp∆T

[0] Also from the notecard:

Cp =
d + 2

2
R

[4] Energy is conserved:
QO = −QO2

[4] Correct expression for Cp, including the correct degrees of freedom for each gas:
5
2
R(Tf − Ti,O) = −7

2
R(Tf − Ti,O2)

[4] Solve for Tf :

Tf =
1
12

(7Ti,O2 + 5Ti,O)

[1] Correct numerical result with correct units:

Tf =
1
12

(7× 373 K + 5× 273 K) = 331 K


