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March 22, 2010

Preceding the solution is the number of points given for the full question. Pre-
ceding each main step of the solution is the number of points for that step.
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a) Determine whether the sequence {a,}>2; converges or diverges. If it con-
verges, find what it converges to. If it does not converge, state the reason why.

b) Determine whether the series Z?:l an converges or diverges. If it converges,
find what it converges to. If it does not converge, state the reason why.

Solution, total 4 points:
(2 points) Part a)

a) The sequence diverges, because the even terms converge to 2 and the odd
terms converge to -2.

When n is even, (—1)" =1, and when n is odd (—1)" = —1.

Therefore, for even n,
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However, for odd n,
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(2 points) Part b)

b) The series diverges: The terms do not converge to 0.

In order for the series Y -  a, to converge, it is necessary that the terms
converge to 0, i.e., that lim,_, a, = 0. In part a) I show that lim, . a, does
not exist, so it cannot be 0, and therefore 220:1 a, diverges.

Find the sum % | a,, where
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by computing the partial sums and taking a limit

Solution, 4 points total

This is a telescoping series, with partial sums

(1 point) for the first few terms
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(1 point) for the general term
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(2 points) Finding the Limit: 1 point for writing the series as a limit of partial
sums, 1 point for evaluation
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Use the integral test to determine whether
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is convergent, or not. (Note that the series meets the conditions for the integral
test.)

Solution, 4 points total

(1 point) Setup
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i—dx does.
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converges if and only if [,

Let u = Inx then du = %dx and [ xﬁwdac = %du = Inwu + constant.

(2 points) Evaluation of the integral

Whether through changing the limits of integration to those of u or by solving
the indefinite integral using u and then reverting to x and its limits of integra-
tion, you will get
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since In(In 2) is finite.

(1 point) Concluding the series is divergent



Determine if the series
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is absolutely convergent, conditionally convergent or divergent.

Solution, 5 points total

The series converges absolutely. This can be shown in different ways; here I use
the ratio test.
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(2 points) Setting up the applicable tests: ratio, alternating (the most work),
root, etc.

(2 point) Finding the limit

(1 point) Determining “absolutely convergent”

Determine if the series

is convergent or divergent.

Solution, 4 points total (breakdown at the discretion of the grader. Suggested



breakdown for the solution shown here: 2 points for the setup of the root test,
2 points for the proper evaluation)

This series diverges. There are different ways to show this, among them exami-
nation using the root (or possibly the ratio) test and showing the terms do not
go to zero. This is a proof using the root test.
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Find the radius of convergence and the interval of convergence of the power

series
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Which function of 2 does this sum up to? (Recall that the series is related in a
simple way to another series you know well).

Solution, total 5 points

(2 points) Finding the radius of convergence: 1 pt for using a correct conver-
gence test, 1 pt for a conclusion

Using the ratio test and the root test one can show that the radius is 1.

Using the ratio test: Let a, be the nth term of the series,
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since both limits exist.

To make the ratio smaller than 1 and therefore attain convergence, we need =
with |z] < 1.

(1 point) Behavior on the boundary

When z = 1, we have Y >~ n, and when z = —1, we get Y. - ,(—1)"n. Both

diverge since, e.g., the terms do not go to 0.
The interval of convergence is (-1, 1).

(2 points) Finding the function: 1 point for noticing how it is related to 1/(1—
x), and 1 point for deducing a sum.

The series sums to the function ﬁ
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Differentiating both sides and using the rules of power series gives >~ | nx
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Multiplying both sides by x gives
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Find Taylor/MacLaurin series expansion for

f(z) = exp(2z),

around z = 0, using the definition of the Taylor/MacLaurin series. Can you
check your answer against something you already know?

Solution, 4 points total



(1 point) General term
(n)
The nth term of the Taylor series expanded at a is fT,(a)a:" and when expanded

at 0 will be %m”

(2 points) Finding the coefficients/terms when f(z) = €%,

Therefore the nth coefficient is i—,

(1 point) Final expansion
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The Taylor series expansion of f(z)is > o°

Sidenote:
This expression may also be achieved by plugging 2z into the expansion for e®.



