Chemistry 1B S'10, Exam II

1. (5 points each) A galvanic cell is constructed that carries out the reaction

$$Pb^{2+}(aq) + 2 Cr^{2+}(aq) \rightarrow Pb(s) + 2 Cr^{3+}(aq)$$

The initial concentration of $Pb^{2+}(aq)$ is 0.15 M, that of $Cr^{2+}(aq)$ is 0.20 M, and that of $Cr^{3+}(aq)$ is 0.0030 M, and T = 25°C.

(a) Calculate the standard cell potential. $Pb^{2+} + 2e^{-} \rightarrow Pb - 0.1263V$ $Cr^{2+} \rightarrow e^{-} + Cr^{3+} + 0.424V$ $\Delta E^{\circ} = 0.298V$

(b) Calculate the initial cell voltage.

$$\Delta \mathcal{E} = \Delta \mathcal{E}^{\circ} - \frac{RT}{nF} \ln Q = \Delta \mathcal{E}^{\circ} - \frac{0.05916 V}{n} \log Q$$

$$Q = \frac{(0.0030)^{2}}{(0.15)(0.20)^{2}} = 0.0015$$

$$\Delta \mathcal{E} = 0.298V - (-0.0835V) = 0.382V$$

(c) What is the maximum work this cell can do?

$$W_{rev} = -nF\Delta E = -2(96485 \text{ mol} c^{-})(0.382 \text{ V}) = -73.6 \text{ k}^{3}/\text{mol}$$

(d) Which electrode is the <u>cathode</u> and what is its sign?.

(e) Calculate the equilibrium constant for the overall cell reaction.

$$\Delta \mathcal{E} = \Delta \mathcal{E}^{\circ} - \frac{0.05916V}{0.05916V} \log Q$$

$$O = \Delta \mathcal{E}^{\circ} - \frac{0.05916V}{0.05916V} \log K$$

$$\left(\frac{n\Delta \mathcal{E}^{\circ}}{0.05916V}\right)$$

$$K = 10$$

$$K = 1.19 \times 10^{10}$$

Name_____

$$\mathrm{H}_{2}(g) + \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2}\mathrm{O}(\ell)$$

If the fuel cell operates with 60% efficiency, calculate the amount of electrical work <u>generated</u>. <u>per gram of water produced</u>. The gas pressures are constant at 1 atm, and the temperature is

^{25°C.}
$$H_2 + 2H_20 \rightarrow 2e^- + 2H_30^+$$
 0.000 V
 $O_2 + 4H_30^+ + 4e^- \rightarrow 6H_20$ 1.229 V

$$\begin{split} & \omega = \varepsilon \cdot \omega_{rev} = 8 \left(-n F \Delta \varepsilon \right) \\ & \omega = - (.6) \left(2 \right) \left(96485 \frac{C}{mole} \right) \left(1.229 V \right) \\ & \omega = - 142 \quad kJ/mol \quad \left(\frac{mol}{18.02g} \right) \\ & \omega = - 7.88 \frac{KJ}{g} \end{split}$$

3. (15 points) A 0.100 M neutral aqueous $CaCl_2$ solution is electrolyzed using platinum electrodes. A current of 1.50 A passes through the solution for 50.0 hours.

(a) Write the half-reactions occurring at the anode and at the cathode. Anode: $2CI^- \rightarrow 2e^- + CI_2 \rightarrow 4.19$ V is greater than decomp. Cathode: $(a^{2+} + 2e^- \rightarrow Ca)$ potential of water Anode: $6H_2O \rightarrow O_2 + 4H_3O^+ + 4e^-$ Cathode: $2H_3O^+ + 2e^- \rightarrow H_2 + 2H_2O$ (b) What is the decomposition potential?

(c) Calculate the mass, in grams, of the product formed at the cathode.

$$Q = nF$$

$$n = \frac{It}{F} = \frac{(150 \text{ A})(50.0 \text{ hr})(3600 \text{ s/hr})}{96485 \text{ c/mcl}e^{-1}} = 2.80 \text{ mcl}e^{-1}$$

$$m = 2.80 \text{ mcl}e^{-1} \left(\frac{1 \text{ mcl}Hz}{2 \text{ mol}e^{-1}}\right) \left(\frac{2.016 \text{ gHz}}{1 \text{ mol}e^{-1}}\right) = 2.82 \text{ gHz}$$

Chemistry 1B S'10, Exam II

4. (5 points each) Strontium-90 is one of the most hazardous products of atomic weapons testing because of its long half-life ($t_{1/2} = 28.1$ years) and its tendency to accumulate in bone.

(a) Write nuclear equations for the decay of 90 Sr via the successive emission of two beta particles.

(b) The atomic mass of 90 Sr is 89.9073 u and that of 90 Zr is 89.9043 u. Calculate the energy released per 90 Sr atom, in MeV, in decaying to 90 Zr.

$$\Delta m = {}^{90}Zr - {}^{90}Sr = -0.00300n$$

(c) What will be the initial activity of 1.0 g of ⁹⁰Sr released into the environment, in disintegrations per second?

$$A = KN \qquad K = \frac{\ln 2}{t_{y_2}} \qquad N = \frac{m}{M} \cdot N_A$$

$$A = \frac{\ln 2}{28.1 \text{ yr}} \left(\frac{1.0 \text{ q}}{90 \text{ glmsl}}\right) 6.022 \times 10^{23} \text{ mol}^{-1} = 1.65 \times 10^{20} \text{ yr}^{-1}$$

$$= 5.23 \times 10^{12} \text{ s}^{-1}$$

(d) What activity will the material from part (c) show after 100 years? $A_{2} = A_{1} e^{-Kt} = (5 \cdot 23 \times 10^{12} s^{-1}) e_{xp} (-100 yr (\frac{102}{28 \cdot 1 yr}))$ $= 4.44 \times 10^{11} s^{-1}$ Chemistry 1B S'10, Exam II

.

5. (5 points) The solar system abundances of the elements Li, Be, and B are four to seven orders of magnitude lower than those of the elements that immediately follow them: C, N, and O. Explain.

6. (5 points each) Complete and balance the following equations for nuclear reactions that are thought to take place in stars:

(a)
$$2 {}^{12}_{6}C \rightarrow ? + {}^{1}_{0}n$$

 $2 {}^{12}_{6}C \rightarrow ? + {}^{1}_{0}n$
 $2 {}^{12}_{6}C \rightarrow {}^{1}_{0}n + {}^{23}_{12}M_{3}$

(b)
$$? + \frac{1}{1}H \rightarrow \frac{12}{6}C + \frac{4}{2}He$$

 $\frac{15}{7}N + \frac{1}{1}H \rightarrow \frac{12}{6}C + \frac{4}{2}He$

7. (5 points each)

(a) Explain why elements heavier than ⁵⁶Fe are not synthesized in normal stars.

⁵⁶Fe has the most stalle nucleus (highest binding energy per nucleon). Producing heavier elements by fusion is endothermic.

(b) Write the <u>net</u> equation for the fusion reaction that powers our sun.

4 'H \rightarrow 4 He + 2°et + 2°ve + y (non-stoich.)