CS70 Discrete Mathematics and Probability Theory, Fall 2009

Midterm 1
7:00-9:00pm, 8 October

Notes: There aréive questions on this midterm. Answer each question part in the space below it, using the
back of the sheet to continue your answer if necessary. If you need more space, use the blank sheet at the end.
In both cases, be sure to clearly label your answétshe of the questions requires a very long answer,

so avoid writing too much! Unclear or long-winded solutions may be penalizedThe approximate credit

for each question part is shown in the margin (total 100 points). Points are not necessarily an indication of
difficulty!

Your Name: Your Section:

Person on left: Person on right:

For official use; please do not write below this line! For official use; please do not write below this
line!

Q1 16
Q2 20
Q3 20
Q4 14
Q5 |15+15
Total | 100

[exam starts on next page]



1. [Propositional Logic] [16 pts]

A. (8 pts - 2 pts each) State whether the following equivalences are valid or invalid. There is no need to
justify your answers. Guess at your own risk - wrong answers will be awarded negative credit.

. =Vn[(P(n) AQ(n)) = -R(n)] = 3In[P(n) A Q(n) A R(n)]

Solution: This equivalence is valid. We can show this by applying DeMorgan’s law and using the
factthatP = Q = -P V Q.

—Vn[(P(n) AQ(n)) = —R(n)]
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Il. Ym3In [VI(A(m,l) A B(n,l)) = C(m,n)] = VYm3In [-C(m,n) = N(-~A(m,l) V =B(n,l))]

Solution: This equivalence is valid. We can show this by using the fact that an implication and
its contrapositive are equivalent, thatits= @ = -Q = —P, and by using DeMorgan’s law.

Vm 3In VI(A(m,1) A B(n,l)) = C(m,n)] = VYm3n[-C(m,n) = —~(VI(A(m,l) A B(n,l)))]
= Vm3n[-C(m,n) = N(=A(m,l) V -B(n,l))]

. VmVn[P(m) = Q(n)] = VnVm[Q(n) = P(m)]

Solution: This equivalence is invalid. That is because an implication and its converse are not
necessarily equivalent, thati3= Q # Q = P.

V. =VI3mVn[(P(m)AQ())V R(m,n,l)] = AVm3In[(-P(m) A -Q()) V -R(m,n,l)]

Solution: This equivalence is invalid. It involves an incorrect application of DeMorgan’s law (it
does not flip the or into an and).

=VIImVn[(P(m) AQ()) V R(m,n,l)] = 3J¥YmIn-[(P(m)AQ())V R(m,n,l)]
= JVYmIn[-~(P(m)AQ()) A —=R(m,n,l)]
= VYmIn[(—=P(m)V -Q(l)) AN =R(m,n,l)]
Z AVYm3In[(—=P(m) A=Q()) V —-R(m,n,l)]

B. (8 pts - 2 pts each) For nonnegative integeendy, let P(x, y) be the proposition that!+ y > zy”
. Which of the following statements are true? Give a one line proof or a counterexample.

l. Vz3yP(x,y)

Solution: This statement is true. A simple way to show this is to say that for every valuensd
picky = 1. Then,P(z,y) is always true since + 1 > z for all x.



Il. 3z 3IyP(z,y)

Solution: This statement is true. To show this we just need tofimthdy that satisfy the property
P(z,y). We can just pickk =y = 1; thenwe cansee that- 1 =2 >1=1-1.

. JzVyP(z,y)

Solution: This statement is true. A simple way to show this is to say that wepiekl. Then,
for every value ofy, P(x,y) is true sincey + 1 > y for all y.

V. VzVyP(x,y)
Solution: This statement is false. A simple way to show this is to pick a counterexample. We
pickz =y =3. Thenwe havé =3 +3 ¥ 9=3-3.



2. [Proofs.] [20 pts]

A. (10 pts) LetD,, be the number of ways to tilezax n checkerboard with dominos, where a domino is
al x 2 piece. Prove thab,, < 2™ for all positive integers:.. (Find a recurrence relation fdp,,. No
need to give a proof. Then inductively prove the upper boun®dgpn

Note that dominos can only be placed exactly aligned with checkerboard squares, and cannot be placed
diagonally.

Solution: First we need to come up with a recurrence relation/¥gr Consider the case when> 3;

we want to break down the case when we ha@»an size checkerboard to smaller cases. If we
start tiling from the end of the board, we see that there are two possibilities - either we put a domino
on horizontally, in which case we are left with a board of stze n — 1, or we can put on two
dominos vertically, in which case we are left with a board of size n — 2. So, our relation is

D, = Dy,_1 + D,_5. Now we prove thaD,, < 2",

Base Casein this situation it is easier if we uskbase cases. First, consider the case when 1.
There is exactly one way to tile such a checkerboardyse= 1 < 2. Next, consider the case when

n = 2. We can either tile this checkerboard with two horizontal dominos or two vertical dominos. So
Dy =2 <4,

Induction HypothesisAssume thatD,, < 2", for all n < k. We want to show that it is true for
n==k+1.

Induction StepWe combine our recurrence relation and the induction hypothesis to get:

Diy1 = Dp+ Dy
ok | ok—1
ok 4 ok
2k+1

IN A

So we have shown thdd, ; < 2k+1 and thus we know thab,, < 2" for all positive integers, and
so we are done.

B. (10 pts) Show that odda € N,a? =1 mod 8.

Solution: An easy way to prove this is just to show that this is truedoe 1,3,5,7. Because of

the properties of arithmetic modu§ all odd numbers modul® are equivalent to either, 3,5, or 7.
Because of this fact, if we show it is true for these four numbers, then we have shown it to be true for
all odda € N. So we get

12 = 1 mod8
32 = 9 mod 8
= 1 mod8
52 = 25 mod 8
= 1 mod8
77 = 49 mod 8
= 1 mod&

Alternate Solution: Since an odd natural number is definedast 1 for somek € N, we need to
prove thatvk € N, (2k + 1) =1 mod 8.



Base Casek = 0. Then(2k +1)? =1 =1 mod 8.

Induction HypothesisAssume that2k +1)? = 1 mod 8. We want to show tha2(k+1) +1)2 =1
mod 8.

Induction StepWe have

2k+1)+1)2 = (2k+3)?

4k* + 12k +9

(4k* + 4k + 1) + 8k + 8
(2k +1)* +8(k + 1)
1+0 mod8

1 mod 8

Thus,Vk € N, (2k +1)2 =1 mod 8.



3. [RSA] [20 pts]
A. (10pts)e="7,p="7,q =11 Findd.

Solution: Remember that from the way RSA is setup thiat e=! mod (p — 1)(¢ — 1). So we are
looking ford = 7~! mod 60. In order to find this, we use the extended GCD algorithm with inputs
60 and7.

egcd(60, 7)
eged(7, 4)
egcd(4, 3)
eged(3, 1)
eged(1, 0)
return (1, 1, 0)
return (1, 0, 1)
return (1, 1, 0 - (4 div 3) x 1) = (1, 1, -1)
return (1, -1, 1 - (7 div 4) x (-1)) = (1, -1, 2)
return (1, 2, -1 - (60 div 7) x 2) = (1, 2, -17)

We can read off from here thdt= —17 = 43 mod 60.

B. (5 pts) With RSA Amazon casign a message as follows; For a system with public kBye) and
secret keyl, Amazon sends the messagez? mod N). If Bob gets(z, i), how can he verify that
y = 2? mod N? (Bob does not know and the answer is very brief.)

The answer that we were looking for is very simple. If Bob recejweg) and knowg N, e¢), one way
that he could verify thay = 2 is simply to encrypt the messagelf y = 2%, we get:
E(z?) = (29° mod N

= 2% mod N
- pkl-D(-D  0d N

= x mod N
This was shown all with properties that we learned from RSA. SB(if) = x, then we know that the
messagézx, y) was sent by Amazon.

C. (5 pts) Use the fact that’"' = 1 mod p for prime p anda relatively prime top to prove that
aP~D=1) =1 mod pq for primesp andq anda relatively prime top andg.

From the fact that?~' = 1 mod p, we can see that:

a1 — (P11 mod p
= 197! modp
= 1 modp
Similarly, we see that®~1(@~1) = 1 mod p. So, from this we can see that:
aP D= _1 = jp
aP~ D) _ 1 = kg

So, jp = kq. From this we can see thatdivideskq. However, since andgq are distinct, they are
relatively prime to each other. Therefokemust be a multiple op - let’s call it mp. So we get
P DD 1 = g
a?= =D — 1 4 mpg
a0 — 1 mod pg



We noticed a lot of people tried to use the Chinese remainder theorem to solve this problem. Since the
Chinese Remainder Theorem was not covered in lecture or the homework, and was only mentioned once in
the section notes, we only accepted answers that were very complete when they used the Chinese Remainder
Theorem. Here is what we were looking for.

The Chinese remainder theorem states that if a number modgui® uniquely determined by its value
modulop andq. That is, giveru andb, that there is a unique numbemodulopg such thatt = ¢ mod p
andz = b mod ¢. So, in this problem, we first expected you to show @&t (¢~ = 1 mod p and
aP~D@=1 = 1 mod ¢. Also, you would need to state that= 1 mod p andl = 1 mod ¢. Then, by
the Chinese remainder theorem, since there is a uniqgue number mgdulat is equivalent td modulop
and1 modulog, we must have that?~1(@=1) = 1 mod pq.



4. [Stable Marriage] [14 pts]

A. (8 pts) Consider an instance of the Stable Marriage problem in which the mgn . &g3,4}, the
women are{ A, B, C, D}, and the preference lists are

Men (1-4) Women (A-D)

1. A B D C A2 3 4 1
22 C B A D B: 1 4 2 3
3 b C B A C: 1 4 2 3
4. D C A B D: 1 3 2 4

Use the traditional marriage algorithm to find the male-optimal pairing.

Day 1 2 3
1 1

1
2
2 2,4 4
34 3 3
So, the male-optimal pairing (4, 1), (B, 2), (C, 4), (D, 3).

ocow>

B. (3 pts) Givernn men and» women, what is the minimum number of stable pairings that must exist for
any set of preferences? Justify your answer by describing an instance.

The minimal number of stable pairingslis This happens when the male-optimal and female-optimal
pairings are the same. An example of this is when mamd womanA have each other on the top
of their list, man2 and womanB have each other on the top of their list, and so on. The only stable
pairing in this instance i6l, A), (2, B), . . ..

It was necessary to describe an instance that works for arbitreryeceive full credit.

C. (3 pts) We saw in the homework that it was possible for a pairing to be stable even if there was a
pair (M, W) such that\/ wasW'’s least favorite man an was M'’s least favorite woman. What
is the maximum number of couples with this property (each member is paired with their least favored
partner) can there be in any stable pairing? Justify your answer.

The maximum number i$; suppose that this is not true - that there is a situation where we have a
stable paring that has at least two such couples - call tHer) and(2, B). In this situation we know

that1 and A have each other on the bottom on their preference lists2amtl B have each other on

the bottom of their preference lists. So, from this we know thatust preferB over A, and2 must

prefer1 over2. Therefore,(1, B) is a rogue couple, which contradicts the fact that the pairing was
stable. Thus, we have a contradiction, and there can be at most one such couple with this property in
any stable pairing.



5. [Codes][30 pts]

A. (15 pts) Your friend sends you a message in the alphabet R =0, F=1, A=2,U =3, and N = 4 using
the polynomial scheme discussed in class. Assume that a polynBipjadver G F'(q) is used, for the
smallest value of that will accommodate the given alphabet. The message size is 3. Four packets are
sent where packet(starting from 0) corresponded #(:). You receive the following packets.

o F
o U
e clearly corrupted
e N

Assuming the three decipherable packets arrive uncorrupted, what is the value in the corrupted packet?
Justify your answer.

The smallesy that will accommodate our siZealphabet is; = 5. So we will do everything modulo

5. From the information given, we know that three of the point$¢f) are (0, 1), (1,3), and(3,4).

We know thatP(-) is a degre€ polynomial, since the message was of sizeAnd since we have

3 points of P(-), we can recoveP(-) exactly using polynomial interpolation. Remember that we do
everything moduld and that instead of dividing we multiply by the inverses moduluVe get:

(x —1)(x — 3)
(0—1)(0-3)
2?2 —4x+3
3
= 2(z? -4z +3)
= 22 — 8246
= 22 +2zx+1
(z —0)(z —3)
(1-0)(1-3)
% — 3z
-2
= 2(z% - 3x)
= 2% — 6z
= 22 4+ 4x
z—0)(x—1
M) = GZgGo)
2?2 —x
6
= 1(z? —2)
22 4 4a
222 + 22 + 1 + 622 4+ 122 + 42° + 162
= 22 +1

Ag(z) =

3
2
[

Now we can useP(z) to recover the corrupted packet: it#¥2) = 9 = 4 = N. So the original
message was FUN.



B. Say another message is sent using five packets and you receive packets F, U, N, U, and R, one of which
is wrong.

I. (7 pts) The original message is either “FUN” or “RUN". Which is it? Why? (Hint: try one.)

Since we already know what the encoding polynomial looks like if the original message was FUN,
let's start by assuming that the original message was FUN. This meam3(that= 222 + 1, and

we know that there is only one corrupted packet. Since the original message was FUN, this means
that the first three packets were sent through uncorrupted. The fourth packet is corrupted - it
should have beef(3) = 4 = N, but we received a U instead. However, the fifth packet is also
corrupted - it should have bedh(4) = 3 = U, but we received an R instead. Therefore, the
original message could not have been FUN, and thus the original message must have been RUN.

Il. (4 pts) Recall that in the Berlekamp-Welch algorithm, one can set up a set of linear equations and
use the solution to reconstruct the original polynomial. How many unknowns and equations do
you have in the Berlekamp-Welch system for this situation?

Recall that in Berlekamp-Welch we are trying to solve for the coefficient9(af) and E(z).
Q(x) is ann — 1 + k degree polynomial - in this case it would b8 & 1 + 1 = 3 degree poly-
nomial, and thus it ha$ unknown coefficientsE(z) is a degreé: polynomial, but we already
know that its highest order coefficientlisIn this case it is a degrdepolynomial, and thus it has
1 unknown coefficient. Thus there asainknowns and equations total.

lll. (4 pts) Write out the equations that correspond to the first two received character3((.)eand
R(1). Denote the coefficients @§(x) usinga; and the coefficients af'(x) by b;.

From above, we know that the form f(z) and E(z) are:

Q(z) = azz®+ agx? + ar1x® + ag
E(x) = z+b

We also know tha€)(i) = R(i)E(i); so fori = 0,1 we get:

Oas + 0ag + 0a; + a9 = 1(0+ by)
ag — bo = 0
And:
az +as +ay+ayg = 3<1+b0)

as+as+a;+ag—3bg = 3



