- 1. (20 points) A skier of mass *m* starts from rest at the top of a solid sphere of radius *r* and slides down its frictionless surface.
  - a) At what angle,  $\theta$ , will the skier leave the sphere?
  - b) Now, instead of a skier, consider a ring of radius R and mass m. Assuming the ring rolls without slipping, at what angle,  $\theta$ , will the ring leave the sphere?



- 2. (20 points) A spring with spring constant k = 80 N/m has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.5 m and a mass of m = 1.8 kg is placed at its free end on a frictionless slope which makes an angle of  $\theta = 37^{\circ}$  with respect to the horizontal. The spring is then released. [Note: you may use the approximations sin  $37^{\circ} = 0.6$  and cos  $37^{\circ} = 0.8$  for simplicity]
  - a) If the mass is *not* attached to the spring, how far up the slope will the mass move before coming to rest?
  - b) If the mass *is* attached to the spring, how far up the slope will the mass move before coming to rest?
  - c) Now the incline has a coefficient of kinetic friction  $\mu_k$ . If the block, attached to the spring, is observed to stop just as it reaches the spring's equilibrium position, what is the coefficient of friction?



- 3.
- a) (10 points) *Calculate* the moment of inertia of a uniform solid sphere of radius  $R_0$  and mass M for an axis through its center.
- b) (15 points) What should be the minimum height, *Y*, above the loop shown below, that the disk must be released so that it can roll without slipping and still make it around the loop of radius
  - R? If you were unable to solve part (a),  $I_{sphere} = 2/5 M R_0^2$

(Hint: The sphere is not a point object - do not neglect its radius!)



- 4. (15 points) A rocket traveling at a speed 1850 m/s away from the Earth at an altitude of 6400 km fires its rockets, which eject gas at a speed of 1300 m/s relative to the rocket. If the mass of the rocket at this moment is 25000 kg and an acceleration of 1.5 m/s<sup>2</sup> is desired, at what rate must the gases be ejected?
- 5. (20 points) A plank of length 2l and mass *m* lies on a frictionless plane. A ball, also of mass *m*, strikes the end of the plank with speed  $v_0$ , as shown. After the collision, the ball continues along the original line of motion with decreased speed. Mechanical energy is conserved in the collision.



- a) Find the final velocity of the ball,  $v_{\rm f}$ .
- b) The experiment is repeated, but this time the plank is pivoted (pegged to the ground) at its lower end. What is the new final velocity of the ball?