
CS 170 Second Midterm ANSWERS 7 April 2010

NAME (1 pt):

SID (1 pt):

TA (1 pt):

Name of Neighbor to your left (1 pt):

Name of Neighbor to your right (1 pt):

Instructions: This is a closed book, closed calculator, closed computer, closed network, open
brain exam, but you are permited a 1 page, double-sided set of notes, large enough to read
without a magnifying glass.

You get one point each for filling in the 5 lines at the top of this page. Each other question
is worth 20 points. No points will be subtracted for wrong answers so it’s in your best interest
to guess all you want.

Write all your answers on this exam. If you need scratch paper, ask for it, write your name
on each sheet, and attach it when you turn it in (we have a stapler).

1
2
3

Total

1

Question 1 (20 points). We are running the following four algorithms on the graph below,
where the algorithms have already “processed” the three bold-face edges:

• Dijkstra’s algorithm for shortest paths, starting from S.

• Prim’s algorithm for the Minimum Spanning Tree (MST), starting from S (ignoring edge
directions).

• Kruskal’s algorithm for the Minimum Spanning Tree (MST) (ignoring edge directions).

• Breadth-First-Search (BFS) starting from S (ignoring both edge directions and edge
weights, but visiting neighboring vertices in lexicographic order).

(a) Which 3 edges would be added next to the MST in Prim’s algorithm? Be sure to indicate
the order in which they are added.

Answer: First (A,B), then (A,E), then (E,H).

(b) Which 3 edges would be added next to the MST in Kruskal’s algorithm? Be sure to
indicate the order in which they are added.

Answer: First (G,H), then (A,B), then (E,H).

(c) Which 3 edges would be added next to the BFS-tree by BFS? Be sure to indicate the
order in which they are added.

Answer: First (A,B), then (A,E), then (C,F).

(d) At this point in the running of Dijkstra’s algorithm, S has been taken off the top of
the priority queue and marked as “visited”. Which 4 vertices would be marked next in
Dijkstra’s algorithm, i.e. deleted from the priority queue and marked? What are the
shortest paths, and their lengths, to these 4 vertices?

Answer: First D (shortest path S-D, length 1), then C (shortest path S-C, length 2),
then A (shortest path S-A, length 3), then B (shortest path S-A-B, length 3+5=8).

2

Question 1 (20 points). We are running the following four algorithms on the graph below,
where the algorithms have already “processed” the three bold-face edges:

• Dijkstra’s algorithm for shortest paths, starting from S.

• Prim’s algorithm for the Minimum Spanning Tree (MST), starting from S (ignoring edge
directions).

• Kruskal’s algorithm for the Minimum Spanning Tree (MST) (ignoring edge directions).

• Breadth-First-Search (BFS) starting from S (ignoring both edge directions and edge
weights, but visiting neighboring vertices in lexicographic order).

(a) Which 3 edges would be added next to the MST in Prim’s algorithm? Be sure to indicate
the order in which they are added.

Answer: First (U,X), then (U,Y), then (Y,Z).

(b) Which 3 edges would be added next to the MST in Kruskal’s algorithm? Be sure to
indicate the order in which they are added.

Answer: First (W,Z), then (U,X), then (Y,Z).

(c) Which 3 edges would be added next to the BFS-tree by BFS? Be sure to indicate the
order in which they are added.

Answer: First (R,T), then (R,W), then (U,X).

(d) At this point in the running of Dijkstra’s algorithm, S has been taken off the top of
the priority queue and marked as “visited”. Which 4 vertices would be marked next in
Dijkstra’s algorithm, i.e. deleted from the priority queue and marked? What are the
shortest paths, and their lengths, to these 4 vertices?

Answer: First V (shortest path S-V, length 1), then R (shortest path S-R, length 2),
then U (shortest path S-U, length 3), then X (shortest path S-U-X, length 3+5=8).

3

Question 1 (20 points). We are running the following four algorithms on the graph below,
where the algorithms have already “processed” the three bold-face edges:

• Dijkstra’s algorithm for shortest paths, starting from S.

• Kruskal’s algorithm for the Minimum Spanning Tree (MST) (ignoring edge directions).

• Prim’s algorithm for the Minimum Spanning Tree (MST), starting from S (ignoring edge
directions).

• Breadth-First-Search (BFS) starting from S (ignoring both edge directions and edge
weights, but visiting neighboring vertices in lexicographic order).

(a) Which 3 edges would be added next to the MST in Prim’s algorithm? Be sure to indicate
the order in which they are added.

Answer: First (L,P), then (L,Q), then (Q,R).

(b) Which 3 edges would be added next to the MST in Kruskal’s algorithm? Be sure to
indicate the order in which they are added.

Answer: First (N,R), then (L,P), then (Q,R).

(c) Which 3 edges would be added next to the BFS-tree by BFS? Be sure to indicate the
order in which they are added.

Answer: First (J,K), then (J,N), then (L,P).

(d) At this point in the running of Dijkstra’s algorithm, S has been taken off the top of
the priority queue and marked as “visited”. Which 4 vertices would be marked next in
Dijkstra’s algorithm, i.e. deleted from the priority queue and marked? What are the
shortest paths, and their lengths, to these 4 vertices?

Answer: First M (shortest path S-M, length 1), then J (shortest path S-J, length 2),
then L (shortest path S-L, length 3), then P (shortest path S-L-P, length 3+5=8).

4

Question 2 (20 points). In this problem, we will analyze a new algorithm for Minimum
Spanning Tree (MST). It is based on the observation that for every vertex of a graph, the
shortest edge incident on that vertex is part of an MST. In this problem, we assume we have
an undirected connected graph G=(V, E), where edge weights can be positive or negative.
(Part a is worth 6 points, and parts b-h are worth 2 points each.)

a) The shortest edge incident on any vertex is part of an MST. Prove this fact by filling in
the blanks in the following proof by contradiction:

Assume for the sake of contradiction that the shortest edge ev (of weight w0) incident
on vertex v is not part of any MST. Consider the union of an MST T and ev, T

⋃
{ev}, which will have a containing vertex v. This will
have (how many?) edges incident on v. Assume we remove the edge e of
weight w that was originally part of the MST T. Of course, w is (bigger
than? less than? equal to?) w0 by the original assumption. Then, by removing e from T⋃

{ev}, we obtain a new T’ of weight (at least? at most?
equal to?) the weight of T. Hence T’ (containing edge ev) is an MST - contradiction!

Answer: Assume for the sake of contradiction that the shortest edge ev (of weight w0)
incident on vertex v is not part of any MST. Consider the union of an MST T and
ev, T

⋃
{ev}, which will have a cycle containing vertex v. This cycle will have two

(how many?) edges incident on v. Assume we remove the edge e of weight w that was
originally part of the MST T. Of course, w is bigger than (bigger than? less than? equal
to?) w0 by the original assumption. Then, by removing e from T

⋃
{ev}, we obtain a

new tree T’ of weight at most (at least? at most? equal to?) the weight of T. Hence T’
(containing edge ev) is an MST - contradiction!

The algorithm works by creating a series of graphs Fi (i.e. F1, F2, . . .). At each step i,
we create graph Fi from graph Fi−1 by contracting two nodes into one as shown below, and
then updating the edges correspondingly, keeping only the shortest edge between any pair of
vertices:

F0 = G, set T is initially empty

i = 1

While Fi−1 has at least two vertices: (start step i)

Initialize all vertices in Fi−1 to be unmarked

For k=1, 2, ... up to the number of vertices in Fi−1

If vk is unmarked contract vk and its nearest neighbor as follows:
Find the shortest edge incident on vk, call it (vk, vl)
Mark vk and vl

Add (vk, vl) to T
Add a vertex vk′ to graph Fi (vk′ is the “contracted” vertex in Fi of both
vk and vl)

For each edge e = (va, vb) of Fi−1, add an edge between the contracted vertices in
Fi (e.g. va′ and vb′) under the conditions:

5

va′ and vb′ are distinct
if there already is an edge between va′ and vb′ in Fi, only keep the one of lower
weight

i = i + 1

Return T

For the following questions, circle the correct answer (as we previously said, a step is
performed every time we update from Fi−1 to Fi)

b) The total number of steps will be (circle the tightest bound)

O(|E|log|E|) O(
√
|V |) O(|E|) O(log|V |)

Answer: O(log|V |)

c) At each step, the amount of work is (circle the tightest bound)

O(|E|) O(|V |) O(|E|2) O(|V |2)
Answer: O(|E|)

d) Hence, the running time of this algorithm, compared to Kruskal, seems to be assymp-
totically:

Faster The same Cannot be compared Slower

Answer: The same

By doing a more careful analysis, it turns out we can improve on part c. Let |Fi| be the
number of vertices of Fi.

e) How many edges can Fi have in the worst case (circle the tightest bound)

O(|Fi|2) O(|Fi|log|Fi|) O(|Fi|) O(|Fi|
√
|Fi|)

Answer: O(|Fi|2)

f) Hence, the amount of work per step is the minimum of and
(fill in the blanks)

Answer: Hence, the amount of work per step is the minimum of O(|E|) and O(|Fi|2) (fill
in the blanks)

6

Now find the total running time under the following assumptions:

g) If the graph is sparse (|E| = Θ(|V |)) then the total running time is (circle the tightest
bound)

O(|E|
√
|E|) O(|E|log|E|) O(|E|) O(|E|2)

Answer: O(|E|log|E|)

h) If the graph is dense (|E| = Θ(|V |2)), then the total running time is (circle the tightest
bound)

O(|E|
√
|E|) O(|E|2) O(|E|log|E|) O(|E|)

Answer: O(|E|)

7

Question 2 (20 points). In this problem, we will analyze a new algorithm for Minimum
Spanning Tree (MST). It is based on the observation that for every vertex of a graph, the
shortest edge incident on that vertex is part of an MST. In this problem, we assume we have
an undirected connected graph G=(V, E), where edge weights can be positive or negative.
(Part a is worth 6 points, and parts b-h are worth 2 points each.)

a) The shortest edge incident on any vertex is part of an MST. Prove this fact by filling in
the blanks in the following proof by contradiction:

Assume for the sake of contradiction that the shortest edge ev (of weight w0) incident
on vertex v is not part of any MST. Consider the union of an MST T and ev, T

⋃
{ev}, which will have a containing vertex v. This will
have (how many?) edges incident on v. Assume we remove the edge e of
weight w that was originally part of the MST T. Of course, w is (bigger
than? less than? equal to?) w0 by the original assumption. Then, by removing e from T⋃

{ev}, we obtain a new T’ of weight (at least? at most?
equal to?) the weight of T. Hence T’ (containing edge ev) is an MST - contradiction!

Answer: Assume for the sake of contradiction that the shortest edge ev (of weight w0)
incident on vertex v is not part of any MST. Consider the union of an MST T and
ev, T

⋃
{ev}, which will have a cycle containing vertex v. This cycle will have two

(how many?) edges incident on v. Assume we remove the edge e of weight w that was
originally part of the MST T. Of course, w is bigger than (bigger than? less than? equal
to?) w0 by the original assumption. Then, by removing e from T

⋃
{ev}, we obtain a

new tree T’ of weight at most (at least? at most? equal to?) the weight of T. Hence T’
(containing edge ev) is an MST - contradiction!

The algorithm works by creating a series of graphs Hj (i.e. H1,H2, . . .). At each step j,
we create graph Hj from graph Hj−1 by contracting two nodes into one as shown below, and
then updating the edges correspondingly, keeping only the shortest edge between any pair of
vertices:

H0 = G, set T is initially empty

j = 1

While Hj−1 has at least two vertices: (start step j)

Initialize all vertices in Hj−1 to be unmarked

For l=1, 2, ... up to the number of vertices in Hj−1

If ul is unmarked contract ul and its nearest neighbor as follows:
Find the shortest edge incident on ul, call it (ul, ui)
Mark ul and ui

Add (ul, ui) to T
Add a vertex ul′ to graph Hj (ul′ is the “contracted” vertex in Hj of both
ul and ui)

For each edge e = (ub, uc) of Hj−1, add an edge between the contracted vertices in
Hj (e.g. ub′ and uc′) under the conditions:

8

ub′ and uc′ are distinct
if there already is an edge between ub′ and uc′ in Hj , only keep the one of lower
weight

j = j + 1

Return T

For the following questions, circle the correct answer (as we previously said, a step is
performed every time we update from Hj−1 to Hj)

b) At each step, the amount of work is (circle the tightest bound)

O(|V |) O(|E|) O(|E|2) O(|V |2)
Answer: O(|E|)

c) The total number of steps will be (circle the tightest bound)

O(|E|log|E|) O(log|V |) O(
√
|V |) O(|E|)

Answer: O(log|V |)

d) Hence, the running time of this algorithm, compared to Kruskal, seems to be assymp-
totically:

Faster Cannot be compared The same Slower

Answer: The same

By doing a more careful analysis, it turns out we can improve on part c. Let |Hj | be the
number of vertices of Hj .

e) How many edges can Hj have in the worst case (circle the tightest bound)

O(|Hj |log|Hj |) O(|Hj |2) O(|Hj |) O(|Hj |
√
|Hj |)

Answer: O(|Hj |2)

f) Hence, the amount of work per step is the minimum of and
(fill in the blanks)

Answer: Hence, the amount of work per step is the minimum of O(|E|) and O(|Hj |2)
(fill in the blanks)

9

Now find the total running time under the following assumptions:

g) If the graph is sparse (|E| = Θ(|V |)) then the total running time is (circle the tightest
bound)

O(|E|
√
|E|) O(|E|) O(|E|2) O(|E|log|E|)

Answer: O(|E|log|E|)

h) If the graph is dense (|E| = Θ(|V |2)), then the total running time is (circle the tightest
bound)

O(|E|
√
|E|) O(|E|) O(|E|2) O(|E|log|E|)

Answer: O(|E|)

10

Question 2 (20 points). In this problem, we will analyze a new algorithm for Minimum
Spanning Tree (MST). It is based on the observation that for every vertex of a graph, the
shortest edge incident on that vertex is part of an MST. In this problem, we assume we have
an undirected connected graph G=(V, E), where edge weights can be positive or negative.
(Part a is worth 6 points, and parts b-h are worth 2 points each.)

a) The shortest edge incident on any vertex is part of an MST. Prove this fact by filling in
the blanks in the following proof by contradiction:

Assume for the sake of contradiction that the shortest edge ev (of weight w0) incident
on vertex v is not part of any MST. Consider the union of an MST T and ev, T

⋃
{ev}, which will have a containing vertex v. This will
have (how many?) edges incident on v. Assume we remove the edge e of
weight w that was originally part of the MST T. Of course, w is (bigger
than? less than? equal to?) w0 by the original assumption. Then, by removing e from T⋃

{ev}, we obtain a new T’ of weight (at least? at most?
equal to?) the weight of T. Hence T’ (containing edge ev) is an MST - contradiction!

Answer: Assume for the sake of contradiction that the shortest edge ev (of weight w0)
incident on vertex v is not part of any MST. Consider the union of an MST T and
ev, T

⋃
{ev}, which will have a cycle containing vertex v. This cycle will have two

(how many?) edges incident on v. Assume we remove the edge e of weight w that was
originally part of the MST T. Of course, w is bigger than (bigger than? less than? equal
to?) w0 by the original assumption. Then, by removing e from T

⋃
{ev}, we obtain a

new tree T’ of weight at most (at least? at most? equal to?) the weight of T. Hence T’
(containing edge ev) is an MST - contradiction!

The algorithm works by creating a series of graphs Lk (i.e. L1, L2, . . .). At each step k,
we create graph Lk from graph Lk−1 by contracting two nodes into one as shown below, and
then updating the edges correspondingly, keeping only the shortest edge between any pair of
vertices:

L0 = G, set T is initially empty

k = 1

While Lk−1 has at least two vertices: (start step k)

Initialize all vertices in Lk−1 to be unmarked

For i=1, 2, ... up to the number of vertices in Lk−1

If wi is unmarked contract wi and its nearest neighbor as follows:
Find the shortest edge incident on wi, call it (wi, wj)
Mark wi and wj

Add (wi, wj) to T
Add a vertex wi′ to graph Lk (wi′ is the “contracted” vertex in Lk of both
wi and wj)

For each edge e = (wc, wd) of Lk−1, add an edge between the contracted vertices in
Lk (e.g. wc′ and wd′) under the conditions:

wc′ and wd′ are distinct

11

if there already is an edge between wc′ and wd′ in Lk, only keep the one of lower
weight

k = k + 1

Return T

For the following questions, circle the correct answer (as we previously said, a step is
performed every time we update from Lk−1 to Lk)

b) At each step, the amount of work is (circle the tightest bound)

O(|V |) O(|E|2) O(|E|) O(|V |2)
Answer: O(|E|)

c) The total number of steps will be (circle the tightest bound)

O(|E|log|E|) O(
√
|V |) O(log|V |) O(|E|)

Answer: O(log|V |)

d) Hence, the running time of this algorithm, compared to Kruskal, seems to be assymp-
totically:

Faster Cannot be compared Slower The same

Answer: The same

By doing a more careful analysis, it turns out we can improve on part c. Let |Lk| be the
number of vertices of Lk.

e) How many edges can Lk have in the worst case (circle the tightest bound)

O(|Lk|log|Lk|) O(|Lk|) O(|Lk|2) O(|Lk|
√
|Lk|)

Answer: O(|Lk|2)

f) Hence, the amount of work per step is the minimum of and
(fill in the blanks)

Answer: Hence, the amount of work per step is the minimum of O(|E|) and O(|Lk|2)
(fill in the blanks)

12

Now find the total running time under the following assumptions:

g) If the graph is dense (|E| = Θ(|V |2)), then the total running time is (circle the tightest
bound)

O(|E|) O(|E|
√
|E|) O(|E|2) O(|E|log|E|)

Answer: O(|E|)

h) If the graph is sparse (|E| = Θ(|V |)) then the total running time is (circle the tightest
bound)

O(|E|log|E|) O(|E|
√
|E|) O(|E|) O(|E|2)

Answer: O(|E|log|E|)

13

Question 3 (20 points)

Only answers for version 1 of the question is supplied, other versions differ in variable names
only.

In this question we will be given a string of characters, s = (s1, s2, . . . , sn).

A set D is called a “legal set of matchings” if its elements are pairs of indices (a, b) where
1 ≤ a < b ≤ n and sa = sb, and any two elements (a, b) and (x, y) are either “disjoint”, i.e
a < b < x < y or x < y < a < b, or “nested”, i.e. a < x < y < b or x < a < b < y.

Notice that if two pairs (a, b) and (x, y) are neither disjoint or nested, then either they share
an end point a = x or a = y or b = x or b = y, or they “partially overlap”, a < x < b < y
or x < a < y < b. In a legal set of matchings D, no 2 elements may share an endpoint or
partially overlap.

Graphically, if we write s on a linear line, and draw every match we pick (a, b) as an edge
between sa and sb (the edge is drawn above the string, see figure), a set is a legal set of
matchings if the edges representing the matchings don’t intersect.

NOT Legal Matching: Legal Matching:

We want to find an efficient dynamic programming algorithm that returns the size of the
maximal legal set of matchings for a given string s.

a. (4 points) Complete the following subproblem definition:

K(a, b) is the size of the maximal legal set of matchings

Answer:

K(a, b) is the size of the maximal legal set of matchings in the substring of s from
index a to index b.

14

b. (6 points) We define:

IsMatch(a, b) =
{

1 if sa = sb

0 if sa 6= sb

Write out the the computation for K(a, b), using previous subproblems and the IsMatch
function:
Hint: It is helpful to consider the two distinct cases of trying to match a with b, or not
trying to do so.

K(a, b) = max
{ }

Answer:

K(a, b) = max {IsMatch(a, b) + K(a + 1, b − 1), max a≤x<b{K(a, x) + K(x + 1, b)}}

c. (5 points) Write the pseudocode for your algorithm. The base case is ∀a K(a, a) = 0

Answer:
Iterations:

for j = 0, . . . , n − 1 do
for a = 1, . . . , n do

if a + j ≤ n then
compute K(a, a + j)

end if
end for

end for
return K(1, n)

d. (5 points) What is the running time of your algorithm?

Answer: O(n3)

Short Explanation:

Answer: Every calculation of K(a, b) takes O(n) and there are two nested loops, each
taking O(n).

15

