
ME/BioE C117                                                                                                                       April 13, 2006 
Professor Lisa Pruitt                                                                                                              Exam #2 
 
This is a closed notes/closed book exam.  Show all work. Write your name on every page. 
NAME: 
______________________________________________________________________________ 

(100 pts) You are an engineer working for a medical device company, and a surgeon proposes a design 
for a spinal disc replacement that is shown below. 

 
Figure 1. Spinal Disc Replacement (Not to scale) 

 
The device is made up of a core that is surrounded by rings. The surgeon tells you that 
the reasoning behind their design is to mimic the basic structure of the natural disc. 
The core supports load by pressurization, and the rings will keep the core from over 
expanding. This is analogous to the nucleus pulposus and annulus fibrosus of the 
natural intervertebral disc. 
 
The core is made from a soft and incompressible material, and the rings are made of 
Cobalt-Chrome wire. This initial design has 3 total rings. Dimensions and material 
properties of the device are given below: 
 
Core 

• Incompressible 
• Diameter, DC = 3.00 cm 
• Height, hC = 1.00 cm 

 
Ring  

• Modulus, E = 200 GPa 
• Yield Strength, σyld = 600 MPa 
• Diameter, DR = 0.50 mm 
• 3 total rings (initial design) 

 
 
Your job is to determine if this is a safe and feasible design. Consider the uniform axial 
loading scenario shown below. 
 

Core 

Ring DR 
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(Not to scale) 

Uniform load 

Figure 2. Illustration of Uniform Uniaxial Loading 

 
Static Analysis 
 

1. Calculate the stress in the rings for a worst-case load equal to 4X body weight. 
Assume 70 kg for mass. 

 
a. Calculate the pressure in the disc. Since this is an incompressible 

material, the pressure will be the same in ALL directions in the core. 
 
The pressure, p, in the disc is the axial force divided by the axial cross-
sectional area. 
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b. Perform equilibrium on the following cut section of the device to 

determine the hoop stress, σhoop, in the rings. The force due to the 
pressure must be balanced by the force in the rings. Assume uniform 
stress, σhoop, in the rings. (Note: Solve for σhoop symbolically because you 
will be using that equation again.) 

 



(Not to scale) 
Pressure 

(all directions) 

Figure 3. Section of Device for Equilibrium Analysis 

Hoop stress, σhoop 
(out of page) 

x 
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The method to calculate the hoop stress in the rings is similar to that used 
to derive the hoop stress for a cylindrical thin walled pressure vessel.  
 
Static equilibrium is enforced to calculate the hoop stress. 
 

         (2) 
 
Assume the z-axis is out of the page and is positive. Note that the only net 
force, due to pressure, is in the z-direction. The x and y components for 
pressure cancel out. The only net forces are shown below. The force due 
to pressure, F

∑ = 0ZF

p, is balanced by the force due to hoop stress, FHOOP. 
 

0=+− HOOPp FF         (3) 
 
Fp, is equal to the pressure multiplied by the projected area, and FHOOP is 
equal to the hoop stress multiplied by the total area of the rings. 

0=+− RINGSHOOPDISC ApA σ       (4a) 

RINGSHOOPDISC ApA σ=        (4b) 
 



Equation 4b is illustrated in the next figure. 
 

 

pressure, p, acts on 
this shaded area, 
ADISC

Hoop stress, σHOOP, acts 
on these shaded areas, 
ARINGS

ADISC
ARINGS

Equation 4b states that the pressure acting on the shaded area on 
the left must be balanced by the stress acting on the shaded area 
on the right. 
 

 
The area of the disc is given by the following equation. 
 

        (5) 
 
It will be convenient to put the area of the rings in terms of an arbitrary 
number of rings, N. 
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4
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(the factor of 2 is there due to the fact that each ring has two faces on the 
cross section as shown in Figure 3.) 
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Solve for σHOOP       
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(For 3 rings as shown in the initial design, the stress is equal to 989 MPa.) 

Answer 1b → 

 
c. What is the minimum number of rings needed for a safety factor for 

yield of the rings equal to at least 2?  
 



The answer from Problem 1b (Eq. 4d) can be used to solve for N.  
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The given safety factor allows you to calculate the allowable hoop stress. 
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All quantities are known so you can solve for N directly using Eq. 4e. 
 

( )( )( )( )
( ) ( )Pam

mmPaN
62

6

10300005.0
01.003.0109.32

×
×

=
π

 

 
109.9 ⇒=N  rings.  

 
The number of rings must be rounded up to the next whole number. 
The resulting hoop stress for 10 rings is equal to 297 MPa. 

 
2. The spine experiences approximately 2 million total loading cycles per year and you 

want the device to last 25 years. Assume that the stress cycles vary from zero stress to 
maximum values as follows: 
• 98% of total cycles experience stress equal to 0.5 x σhoop 
• 1.5% of  total cycles experience stress equal to 0.8 x σhoop 
• 0.5% of  total cycles experience stress equal to 1.0 x σhoop 

(σhoop is the value resulting from the design you calculated in 1c.) 
 
You have actual fatigue data for the material used for the rings as shown in 
the S-N plot in Figure 4. The data was generated from tests performed with 
a stress range from 0 to the maximum value, S.  
 
a. What is the endurance limit of this material? 

 
The endurance limit is defined as the maximum cyclic stress value, S, 
where the material does not fail. According to the data, this material does 
not fail when subjected to cyclic stress values as high as 200 MPa. 
 

b. Will the rings survive for the required number of cycles? 
 
Miner’s Rule must be used to determine if the rings will fail. The rings 
will survive if the following inequality is satisfied. 
 

Answer 1c → 

Answer 2a → 
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The values for n can be found from the problem statement where each is a 
percentage of the number of total required cycles. A total of 50 million 
cycles are required. 
 

 

 
The values for N must be found from the S-N plot. A best fit line can be 
used to determine N values for each value of S. 
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The values for N corresponding to the values for S are drawn on the S-N 
plot. Approximate N values are given below.  
 

 

 
Values for n and N can be plugged in to Equation 7. 
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A design with 10 rings will not satisfy fatigue requirements. 
Since reading values from the S-N plot is subjective, it is more important 
for you to understand the procedure rather than get the exact numbers 
shown here. 
 

c. What is the minimum number of rings necessary for the part to survive 
the required number of cycles? 
 
There are many ways to approach this problem. One method is to observe 
that adding just enough rings to drop S2 below the endurance limit will 
likely result in an acceptable design. Values for stress can be calculated 

Answer 2b → 



using Eq. 4d. 
 

 Rings (N) 
Stress  10 11 12 

S1 297 269 247 
S2 237 215 198 

148 134 124 S3

 
New values for N can be found from the S-N plot and plugged into 
Equation 7. 
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The resulting minimum number of rings is approximately 12. However, 
since reading N values from the S-N plot is subjective, the technique is 
more important than the final number of rings. 
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Figure 4. S-N Data 

 
 
 
 
 



 
 
 
 

3. During implantation trials, it is seen that occasionally the surgeon makes a scratch 
on one of the wires, forming a surface flaw.  This appears to be unavoidable, so you 
must design the part to tolerate a certain initial flaw size caused after quality 
control inspection. 

 

σ∞

DR = 0.50 mm 

a 

σ∞

Figure 5. Flawed Wire 
• Critical stress intensity (for this specimen size) is 90 MPa*m1/2 
• “Paris” coefficients are C=9e-10 and m=2.96.(for da/dN in mm/cycle, K in 

MPa*m1/2) 
• Threshold stress intensity (this case) is 5 MPa* m1/2. 

 
a. Given the equation for the stress intensity factor: 

 
aYK aI πσ ∞= )(  

where  
 Y(a)= 1.2 if 0<a<0.1mm 
 Y(a)= 1.5 if 0.1<a<0.4 mm 
 Y(a)=2.0 if 0.4<a<0.5mm. 
 



Separate and integrate the Paris Equation to find the number of cycles required to 
grow a crack from an initial size, ai, to a final size af.  Assume here that 0.1<a<0.4mm.  
Show symbolically.  Ignore any possible threshold effects. 
 
We start with the Paris equation, 
 

 mKC
dN
da

Δ=  

 
where we know that K is a function of the crack length a, so we collect stuff that is a 
function of a onto the left side, and dN onto the right side. 
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Thus, we integrate from the intitial crack state to the final one. 
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The problem states that we are considering Y(a) as a constant, since we are in only one of 
the piecewise defined regimes by presumption.  Therefore we can pull out all constant 
terms from the integrals. 
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Thus, we need only integrate a-m/2 between the limits and the rest is just numerical. 
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Thus, we have  
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which is the symbolic form of the number of cycles required to propagate a crack 
between two specified crack lengths. 
 

b.  
i. Only if you solved 3(a): Numerically calculate result from 3(a) 

above, with all parameters as given above in this problem and 
ai=0.11mm and af=0.25mm, except leave the applied stress as a 
variable.  This gives the life as a function of the applied stress.  
Ignore threshold and critical effects. 

 
Calculate coefficient (with C for m/cy for simplicity): 
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Units here are ambiguous.  Now, 

( ) ( )( 48.048.096.21
2
96.21

2
96.21

2 08.210148.6
1

2
96.2
1

1
2

1 −−−∞⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +−

−−=⎟
⎠
⎞

⎜
⎝
⎛ −
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+−
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+−
= ifif

a

a

m

aaeaaQamQN

f

i

σ

Thus, for ai=1.1e-4 m and af=2.5e-4 m 
 

( ) cycleseN 96.21231.3 −∞= σ , where the stress must be input in MPa! 
 
 

 
ii. Only if you did not solve 3(a):  Estimate the life of the part by 

computing da/dN for five equally spaced crack lengths between 
ai=0.11mm and af=0.25mm, and assuming that da/dN is constant 
between these crack length states, like in the homework.  Find the 
estimated life as a function of only the stress, as described in 3(bi).  
Ignore threshold and critical effects. 

 
Crack lengths: a1=0.11mm, a2=0.145mm, a3=0.18mm, a4=0.215mm, a5=0.25mm. 
(Δa=0.035mm) 
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Thus, we rearrange 
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Thus for a1 to a2 (using average crack length) 
 

( ) ( )( ) ( ) ( ) 96.296.2

96.212 1225.1
3128.05.1139

3035.0 −∞−∞ =
−−

−
=Δ σσ

π
e

ee

eN  

 
( ) ( ) ( 96.2

45
96.2

34
96.2

23 1176.5,1154.6,1172.8 −∞−∞−∞ =Δ=Δ=Δ σσσ eNeNeN )
 
Thus, adding all these increments up we get 
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This is a very good estimate (when compared to the closed form solution)! 
 

c. Find the applied stress required for the crack to take 50 million cycles to 
propagate in the analysis in part 3(b).  How many reinforcement rings does this 
require? 

 
We must remember (at all times) that the Paris equation in this case uses stress in MPa.  
If you put a stress of 7MPa into it as 7e6 Pa, you will get out nonsense.   
 
Using the answer from above, we have N=50e6 cycles: 
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Thus for our life, we need the rings to experience no more than 42.5 MPa in service for a 
safety factor of one, or for failure right at 50 million cycles.  We are not considering 
safety factor in this problem, which may be a dubious concept here anyway. 
 
From the solution to the first problem we have the number of rings required for a given 
hoop stress on the ring.  Here we assume that force on the implant is the nominal weight 
of the patient.  Other assumptions for service force may also be applicable, if so stated. 
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For stress 42.5e6 (N/m2) we require Nrings>17.4 rings, or 18 discrete rings for implant to 
survive 50 million cycles in this condition.  Note that this is near maximum, as only 20 
can be stacked within the unloaded height of the implant (1cm), and there will be some 
compression of the device in service.  This may require a design iteration! 
 

d. Calculate the critical crack length for the stress computed in 3(c).  Will the 
crack reach this length in service?  If so, when?  If not, when will failure 
occur? 

 
We are given that 

mMPaKc 90=  
 
and we know 

aYK aI πσ ∞= )(  
 
so we back out the crack length that gives this stress intensity under the stress computed 
above. 
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=0.63m (!)  This uses a first guess of Y=1.5 for a<0.4mm. 
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This is very large, and thus we do not ever expect fast fracture in the component. 
 
Incidentally, the critical crack size for the yield stress is 1.8 mm, which is still much 
larger than the wire.  Also, for an ultimate stress of 800 MPa, the critical crack size is 1 
mm, both assuming Y=2. 
 
Since the crack will not spontaneously propagate to failure, then it seems that the crack 
must propagate through the entire wire thickness for it to break.  This is not the case.  As 
the crack propagates, the cross sectional area reduces, and hence the stress over the 
section ahead of the crack increases.  When the stress throughout this “critical” section 
reaches the ultimate strength of the material, the wire snaps.  This happens when about 
half of the thickness of the wire is compromised, and hence why af=0.25mm was chosen. 
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