Operations Research II IEOR 161 University of California, Berkeley Spring 2004

Solutions for Midterm 1

1. Let X_{i} be the indicator random variable taking value 1 if the $i^{\text {th }}$ contestant pulls out one or two red tickets, 0 otherwise. Also, let X denote the number of prizes given out. We have $X=\sum_{i=1}^{30} X_{i}$ and thus

$$
E[X]=\sum_{i=1}^{30} E\left[X_{i}\right]=\sum_{i=1}^{30} P\left\{X_{i}=1\right\}=30 P\left\{X_{1}=1\right\}
$$

where the last equation comes from the fact that each contestant has the same probability of getting at least one red ticket.
Now
$P\left\{X_{1}=1\right\}=1-P\left\{X_{1}=0\right\}=1-P\{$ contestant 1 pulls out 2 black tickets $\}=1-\frac{80 \times 79}{100 \times 99}$
since there is no replacement. Therefore,

$$
E[X]=30 \times\left(1-\frac{80 \times 79}{100 \times 99}\right)
$$

2. Let X denote the number of heads that occur, F denote the event that the fair coin is chosen, and B the event that the biased coin is chosen.
(a) Conditioning on which coin is chosen gives

$$
\begin{aligned}
E[X] & =E[X \mid F] P\{F\}+E[X \mid B] P\{B\} \\
& =(5 \times 0.5)(0.5)+(5 \times 0.7)(0.5) \\
& =3
\end{aligned}
$$

where the second equation comes from the fact that $X \mid F$ is a binomial random variable with parameters $(5,0.5)$, and $X \mid B$ is a binomial random variable with parameters ($5,0.7$).
(b) We want to find $P\{F \mid X=4\}$. Using Bayes rule gives

$$
\begin{aligned}
P\{F \mid X=4\} & =\frac{P\{X=4 \mid F\} P\{F\}}{P\{X=4 \mid F\} P\{F\}+P\{X=4 \mid B\} P\{B\}} \\
& =\frac{\binom{5}{4}(0.5)^{4}(0.5) \times(0.5)}{\binom{5}{4}(0.5)^{4}(0.5) \times(0.5)+\binom{5}{4}(0.7)^{4}(0.3) \times(0.5)}
\end{aligned}
$$

3. Let X denote the number of flips Jack makes, Y the number of flips Jill makes. We have X and Y are geometric random variables with parameters 0.5 and p respectively. We want to find $P\{X>Y\}$.
First Approach: Conditioning on the value of X we have

$$
\begin{aligned}
P\{X>Y\} & =\sum_{i=1}^{\infty} P\{X>Y \mid X=i\} P\{X=i\} \\
& =\sum_{i=2}^{\infty} P\{Y<i\}(1-0.5)^{i-1}(0.5) \\
& =\sum_{i=2}^{\infty}(1-P\{Y \geq i\})(0.5)^{i} \\
& =\sum_{i=2}^{\infty}\left(1-(1-p)^{i-1}\right)(0.5)^{i}
\end{aligned}
$$

since $P\{Y \geq i\}=P\{$ first $i-1$ flips are tails $\}=(1-p)^{i-1}$.
Second Approach: Conditioning on the value of Y we have

$$
\begin{aligned}
P\{X>Y\} & =\sum_{i=1}^{\infty} P\{X>Y \mid Y=i\} P\{Y=i\} \\
& =\sum_{i=1}^{\infty} P\{X>i\}(1-p)^{i-1} p \quad \text { since } X \text { and } Y \text { are independent } \\
& =\sum_{i=1}^{\infty}(0.5)^{i}(1-p)^{i-1} p
\end{aligned}
$$

since $P\{X>i\}=P\{$ first i flips are tails $\}=(0.5)^{i}$.
Third Approach: Conditioning on the outcome of the first flip of Jack, say $J a_{1}$, and the outcome of the first flip of Jill, say $J i_{1}$ gives

$$
\begin{aligned}
P\{X>Y\}= & P\left\{X>Y \mid J a_{1}=H, J i_{1}=H\right\}(0.5 p) \\
& +P\left\{X>Y \mid J a_{1}=H, J i_{1}=T\right\}(0.5(1-p)) \\
& +P\left\{X>Y \mid J a_{1}=T, J i_{1}=H\right\}(0.5 p) \\
& +P\left\{X>Y \mid J a_{1}=T, J i_{1}=T\right\}(0.5(1-p)) \\
= & 0+0+1 \times(0.5 p)+P\{X>Y\}(0.5(1-p))
\end{aligned}
$$

The above equation implies $P\{X>Y\}=\frac{p}{1+p}$.
4. Let A denote the moment when the pipe-smoking man first discovers that one of his matchboxes is empty, and L denote the number of matches left in the box in his left-hand pocket at A, R the number of matches left in the box in his right-hand pocket at A. For each $k=1,2, \ldots, N$, we want to find $P\{L=k$ or $R=k\}$.

We have

$$
P\{L=k \text { or } R=k\}=P\{L=k\}+P\{R=k\}=2 P\{L=k\}
$$

since $\{L=k\} \bigcap\{R=k\}=\varnothing$ and $P\{L=k\}=P\{R=k\}$ by symmetry.
To find $P\{L=k\}$, we condition on from which matchboxes the last match is taken

$$
\begin{aligned}
& P\{L=k\}= P\{L=k \mid \text { last match is from right-hand pocket }\}(0.5) \\
&+P\{R=k \mid \text { last match is from left-hand pocket }\}(0.5) \\
&= P\{\text { exactly } N-k \text { of the first } N-1+N-k \text { matches } \\
&\text { are taken from the left-hand pocket }\}(0.5)+0 \\
&=\binom{2 N-k-1}{N-k}(0.5)^{N-k}(0.5)^{N-1} \times(0.5) \\
&=\binom{2 N-k-1}{N-k}(0.5)^{2 N-k}
\end{aligned}
$$

Therefore the desired probability is

$$
P\{L=k \text { or } R=k\}=2 \times\binom{ 2 N-k-1}{N-k}(0.5)^{2 N-k}
$$

