CS 170 Algorithms
Spring 2009 David Wagner MTl SO]D

Midterm 1 solutions

Please do not read or discuss these solutions in the exam room while others are still taking the
exam.

CS 170, Spring 2009, MT1 Soln

—_

Problem 1. [True or false] (16 points)

Circle TRUE or FALSE. Do not justify your answers on this problem.

(a) or FALSE: If f(n) = (n+1)n/2, then f(n) € O(n?).
(b) or FALSE: If f(n) = (n+1)n/2, then f(n) € O(n?).
(c) TRUE or|FALSE]: If f(n) = (n+ 1)n/2, then f(n) € ©(n?).
(d) TRUE or[FALSE | n'! € O(n(Ign)?).

(e) or FALSE: It’s possible to multiply two n-bit integers in O(n'-?) time.

Comment: We saw that it was possible to multiple two n-bit integers in O(n'>) time, using a divide-
and-conquer algorithm. So it’s certainly possible to multiply them in O(n') time: just multiply using
the divide-and-conquer algorithm, then execute no-op instructions to mark time until the total running
time is O(n').

) or FALSE: If vertices u,v are in the same strongly connected component of a directed graph G,
then it is necessarily the case that v is reachable from « in G.

(g) TRUE or : If vertices u, v are not in the same strongly connected component of a directed graph
G, then it is necessarily the case that v is nof reachable from u in G.
Comment: It’s possible that u,v are in two different SCCs and there is an edge from u to v.

(h) TRUE or : If we run breadth-first search on a directed graph G starting from vertex s, then

depending on the graph, it might visit some vertices that a depth-first search starting from s would not
visit. (Assume that we use exactly the breadth-first search algorithm specified in the book.)

Problem 2.

Write the solution to the following recurrences. Express your answer using O(-) notation. Do not justify
your answers on this problem. Do not show your work.

Recurrences] (16 points)

(a) Solve the recurrence F(n) = F([n/2])+ O(1).
Answer: F(n) = O(lgn).

(b) Solve the recurrence F(n) =4F([n/2])+ O(1).
Answer: F(n) = O(n?

(
)-
(c) Solve the recurrence F(n) =4F([n/2])+ O(n).
Answer: F(n) = O(n?).
(n

(d) Solve the recurrence F (n) = 4F ([n/2]) + O(n?).

Answer: F(n) = O(n*1gn).

Comment: All of these can be solved using the Master theorem, or by drawing a tree.

CS 170, Spring 2009, MT1 Soln 2

Problem 3. (18 points)

Alice suggests the following variant on mergesort: instead of splitting the list into two halves, we split it
into three thirds. Then we recursively sort each third and merge them.

Three—way mergesort

Mergesort3(A[0..n — 1]):

1. If n < 1, then return A[0..n — 1].

2. Letk:=[n/3| and m:= [2n/3].

3. Return Merge3(Mergesort3(A[0..k — 1]),Mergesort3(Alk..m — 1]), Mergesort3(A[m..n — 1])).

Merge3(Lo,L;,L):
1. Return Merge(Ly, Merge(L;,L;)).

Assume that you have a subroutine Merge that merges two sorted lists of lengths ¢, ¢’ in time O(¢+¢'). You
may assume that n is a power of three, if you wish. Do not justify your answers on this problem. Do not
show your work.

(a) What is the asymptotic running time for executing Merge3(Lo,L;,L,), if Lo, L1, and L, are three sorted
lists each of length n/3? Express your answer using O(-) notation.
Answer: O(n).
Comment: The running time is % + 5 for the call to Merge(L1,L>) and 5 + 23—” for the outer call, for a
total of %”, which is in O(n).

(b) Let T'(n) denote the running time of Mergesort3 on an array of size n. Write a recurrence relation for
T (n).
Answer: T'(n) =3T(n/3)+ O(n).

Comment: There are three recursive calls to Mergesort3, each on a list of size n/3, followed by a call
to Merge3, which takes O(n) time by part (a).

(c) Solve the recurrence relation in part (b). Express your answer using O(-) notation.
Answer: T(n) = O(nlgn).
(d) Is the Mergesort3 algorithm asymptotically faster than insertion sort? Circle or NO.

Comment: Insertion sort runs in O(n?) time, which is asymptotically slower.

(e) Is the Mergesort3 algorithm asymptotically faster than the ordinary mergesort? Circle YES or .

Comment: Ordinary mergesort runs in O(nlgn) time, which is asymptotically no faster or slower than
Mergesort3.

Problem 4. [Algorithm design] (12 points)

Suppose we have ¢ sorted arrays, each with n elements, and we want to merge them to get a single sorted
array with tn elements. Your task is to fill in the blanks below to get an algorithm, ManyMerge, that solves
this problem and has a running time of O(ntlg?).

You may assume that you are given an algorithm, Merge(L,L’), that merges two sorted lists of size ¢, ¢’ into
a single sorted list of size £+ ¢'. You may assume that it runs in O(¢+¢') time.

Fill in the empty boxes below, to get a correct algorithm whose running time is O(ntlgt).

CS 170, Spring 2009, MT1 Soln 3

ManyMerge(L;[0..n — 1], L,[0..n —1],...,L;[0..n — 1]):
1. If t = 1, then return .

2. If t = 2, then return Merge(L;,L;).

3. SetL:= ManyMerge(’ Ly,La,...; Ly |)-

4. Set L' := ManyMerge(| Li;/241;---Li—1,Ls ‘)
5. Return | Merge(L,L’) |

Comment: The running time of this solution satisfies the recurrence 7'(t) =27 (¢ /2) 4 O(nt): we recursively
invoke ManyMerge twice, in each case with 7/2 sorted lists of size n; and then we merge two lists of size
nt /2, which takes O(nt) time. The solution to this recurrence is 7' () = O(nt1gt), so the algorithm shown
here does indeed achieve the necessary time bound. It is not hard to see why it is correct.

Problem b. Depth—ﬁrst search] (16 points)

Run depth-first search on the directed graph below, starting at vertex A. Whenever there is a choice of the
order to explore vertices, use alphabetical order (so A is chosen before B, and B before C, etc.).

(a) Draw the DFS tree that results, in the space provided below. Use solid lines for tree edges, and dotted
lines for non-tree edges.

(b) Label each non-tree edge in the graph above with “forward”, “back”, or “cross”, according to whether
the edge is a forward edge, back edge, or cross edge.

(c) Can the above graph be topologically sorted? Circle YES or . Do not justify your answer.

CS 170, Spring 2009, MT1 Soln 4

(d)

How many strongly connected components does this graph have? Do not justify your answer.

Answer: 3.

Comment: The three strongly connected components are: {A}, {E}, and {B,C,D}.

Problem 6. [Short answer} (22 points)

Answer each question below concisely (one short sentence or a number should suffice). Do not justify your
answer. Do not show your work.

(a)

(b)

(©)

(d)

(e

Suppose we are given a directed graph G = (V,E) represented in adjacency list format, and we want
to test whether G is a dag or not, using a method that is as asymptotically efficient as possible. In a
sentence, what approach would you use?

Answer 1: Use DFS, check for back-edges.

Answer 2: Decompose into strongly connected components, check for a SCC with more than one
vertex.

Comment: There is a cycle (and hence G fails to be a dag) if and only if DFS finds a back edge. There
is a cycle (and hence G fails to be a dag) if and only if there is a strongly connected component with
more than one vertex.

What’s the running time of your solution in (a), using O(-) notation?

Answer: O(|V|+ |E|).

Let G = (V,E) be a directed graph with |V| = 1000 vertices, |E| = 5000 edges, and 700 strongly con-
nected components. How many vertices does the metagraph have?

Answer: 700.

Comment: Each vertex in the metagraph corresponds to a strongly connected component in G, so the
number of vertices in the metagraph is the same as the number of SCCs in G.

Let G = (V,E) be a dag, where each edge is annotated with some positive length. Let s be a source
vertex in G. Suppose we run Dijkstra’s algorithm to compute the distance from s to each vertex v € V,
and then order the vertices in increasing order of their distance from s. Are we guaranteed that this is a
valid topological sort of G? Circle YES or .

Justify your answer to part (d) as follows: If you circled YES, then give one sentence that explains the
main idea in a proof of this fact. If you circled NO, then give a small counterexample (a graph with at
most 4 vertices) that disproves it.

Answer:

Comment: Sorting by increasing distance gives S,C, B; but B must precede C in any valid topological
sort.

CS 170, Spring 2009, MT1 Soln 5

(f) Suppose we run Dijkstra’s algorithm on a graph with n vertices and O(nlgn) edges. Assume the graph is
represented in adjacency list representation. What’s the asymptotic running time of Dijkstra’s algorithm,
in this case, if we use a binary heap for our priority queue? Express your answer as a function of n, and
use O(+) notation.

Answer: O(n(lgn)?).

Comment: |V| =n, |E| = O(nlgn), and Dijkstra’s runs in O((|V|+ |E|)1g|V|) time, which is O((n+
O(nlgn))lgn) = O((nlgn) x 1gn) = O(n(Ign)?).

CS 170, Spring 2009, MT1 Soln 6

