Solutions to Midterm 2

1. Prove or disprove:

- (a) Let M be a deterministic Turing machine that, on inputs of length n, uses space $O(n^2)$. Then for every input x, and every configuration C of the computation of M on input x, $K(C) \leq O(|x|)$ there K is Kolmogorov complexity and |x| is the length of x.
- (b) Let M be a deterministic Turing machine that, on inputs of length n, uses space $O(n^2)$ and time $O(n^3)$. Then for every input x, and every configuration C of the computation of M on input x, $K(C) \leq O(|x|)$ where K is Kolmogorov complexity and |x| is the length of x.

[30 points]

SOLUTION OUTLINE:

- (a) The statement is false. Consider a machine M which simply looks at the length n of the input and then enumerates all possible strings of length n^2 on its tape. Since there is a string C of length n^2 such that $K(C) \ge O(n)$, we get a contradiction.
- (b) This statement is true. Any configuration C of the machine can be describes by specifying the code of the machine, the input and the time at which the configuration occurs. Since the code of the machine is a constant, the time can be specified in $O(\log |x|^3) = O(\log x)$ bits and the input is |x| bits, this gives $K(C) \leq O(|x|)$.
- 2. We define #SAT to be the language

 $\#SAT = \{ \langle \varphi, k \rangle \mid \varphi \text{ has exactly } k \text{ satisfying assignments} \}$

Show that:

- (a) #SAT is **coNP** hard (recall that **coNP** = { $L \mid \overline{L} \in \mathbf{NP}$ }).
- (b) $\#SAT \in \mathbf{PSPACE}$.

[40 points]

SOLUTION OUTLINE:

- (a) To show #SAT is **coNP** hard, note that $\varphi \in \overline{SAT} \Leftrightarrow \langle \varphi, 0 \rangle \in \#SAT$ as \overline{SAT} is the set of all the formulas which are unsatisfiable i.e. have exactly 0 satisfying assignments. This shows that $\overline{SAT} \leq_p \#SAT$ which proves the claim.
- (b) We enumerate all possible assignments to the variables and for each assignment, we can check if it satisfies the formula. We also keep a count of the satisfying assignments. Since it takes n bits to store an assignment, n bits to store the counter (as there can be at most 2^n satisfying assignments), polynomial space to check if a given assignment satisfies the formula, the algorithm uses polynomial space overall.

3. Let Th(N, +, ≤) denote theory of the model whose universe is the set of natural numbers (including 0) and the relations are the usual + and ≤ relations as defined on natural numbers. Show that Th(N, +, ≤) is NP-hard.
[30 points]

SOLUTION OUTLINE: We reduce 3SAT to deciding statements in $Th(\mathbb{N}, +, \leq)$. Let φ be a 3SAT formula with variables x_1, \ldots, x_n . We create a logical sentence with quantifiers $\exists x_1, \ldots, x_n$. To simulate \overline{x}_i , for each variable x_i , we add the clause $\exists \overline{x}_i \ (x_i + \overline{x}_i = 1)$. Here, we think of 1 as **true** and 0 as **false**. Note that since x_i and \overline{x}_i are both non-negative, they can be only 0 or 1 by the above clauses.

Finally, we two clauses for checking every clause of φ is satisfied. Say $c_j = (x_{i_1} \vee \overline{x}_{i_2} \vee x_{i_3})$ is a clause in φ . Then we add $\exists y_j \ (y_j = x_{i_1} + \overline{x}_{i_2}) \wedge (1 \leq y_j + x_{i_3})$. Note that we need to add an extra variable y_j for each clause c_j since the '+' relation only allows us to add two numbers at a time. It is easy to see that the reduction is polynomial time and the new sentence is true if and only if φ is satisfiable.