- 1.) In the combustion of butane (C4H10) in excess O2 to give CO2 and H2O, how many moles of CO2 are formed from each mole of butane?
 - A) 1 B) 2 C) 3 D) 4 E) 5
- If 1 mole of glucose (C₆H₁₂O₆) reacts with 1 mole of O₂, according to the reaction below,

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ which is the limiting reagent in the reaction?

A) $C_6H_{12}O_6$ B) O_2 C) CO_2 D) H_2O E) none of these

3.) Which of the following compounds exhibit ionic bonding? Mark all that apply.

- 4.) 6.) Which of the following must be the same before and after a chemical reaction? Mark all that apply.
 - A) The total mass.
 - B) The total pressure.
 - C) The total number of molecules.
 - D) The total number of moles.
 - E) The total number of atoms (including those in molecules).
- 5.) Which of the following contains the most *molecules*?

A) 5.0 g CO_2 B) 5.0 g O_3 C) 5.0 g H_2 D) 5.0 g CO E) 5.0 g Xe

6.) Which difluoropropane (C₃H₆F₂) molecule is chiral? (note: the H atoms are not shown)

A.)
$$\stackrel{F}{\underset{F}{\overset{}C}}$$
 -C-C $\stackrel{F}{\underset{F}{\overset{}B.}}$ $\stackrel{F}{\underset{C-C-C}{\overset{}C}}$ C.) $\stackrel{F}{\underset{C-C-C}{\overset{}C}}$ D.) $\stackrel{F}{\underset{F}{\overset{}C-C-C}}$

7.) 10) Which of the following compounds contains at least one purely covalent bond ($\approx 0 \%$ ionic character)?

A) CHCl₃ B) MnO₄²⁻ anion C) NaI D) HSO₂
$$E)N_3^-$$
 anion

8.) The H-N-H angle in ammonia (NH₃) is:

- c) = 109.5°
- d) between 109.5° and 120°
- e) between 100° and 109.5°

- 9.) The H-N-H angle in the ammonium cation (NH_4^+) is:
 - a) <100°

 - b) > 120° c) = 109.5°
 - d) between 109.5° and 120°
 - e) between 100° and 109.5°

10.) Which of the following is isoelectronic with N₂?

- a) NaCl
- b) O₂
- c) Cl₂
- d) **CO**
- e) $\overline{H_2}$

Short Answer:

1.) Arrange the following in order of decreasing mass:

4.85×10^{22} molecules of BF ₃	0.5 mole of O_2 gas	3.2 grams of H ₂ O
<u>0.5 mole of O2 gas</u> >	<u>4.85 x 10²² molecules of BF3</u> >	<u>3.2 grams of H2O</u>
greatest mass		smallest mass

- 2.) For each molecule indicate the steric # of the central atom, the shape, and the presence or absence of a dipole moment:
 - Shapes 5 1 1
 - A. Linear
 - B. V-shaped/Bent
 - C. Trigonal Planar
 - D. Pyramidal
 - E. Tetrahedral
 - F. Trigonal Bipyramidal
 - G. Octahedral
 - H. T-shaped

Molecule	Workspace	Steric #	Shape	Dipole (Y or N)
PCL6-		6	G	N
BeCl2		2	Α	N
SiH4		4	E	N
ClO4-		4	E	N
NO2-		3	B	Y
ClF3		5	Н	Y

3.) A hydrocarbon of molecular weight 26 is burned to yield CO2 and H2O. The mass spectrum of the products is shown below:

A. Write a balanced equation for the reaction.

 $C_2H_2 + \frac{3}{2}O_2 \rightarrow 2CO_2 + H_2O$

B. Draw the Lewis Electron Dot Structure for the hydrocarbon.

C. Use VSEPR to determine the shape of the molecule. In this molecule, what is the largest number of atoms in a single plane?

The molecule is planar. All six atoms are in a single plane.

4.) A naturally abundant sample of an element is analyzed in a mass spectrometer, yielding the following spectrum:

A. For each peak, what are the Atomic Number, the number of protons and the number of neutrons.

First peak:Atomic number 10, 10 protons, 10 neutronsSecond peak:Atomic number 10, 10 protons, 12 neutrons

B. What is the atomic weight of the naturally abundant element?

20.180

C. What is the element?

neon (Ne)